Effects of Nitrogen Content on Yield and Phytochemical Concentration of Andrographis paniculate Planting in Sandy Soils
Main Article Content
Abstract
Nitrogen played the important role on quantity and quality of economic crops. However, no researches had been conducted the suitable nitrogen content in medicinal plants as Andrographis paniculate. Therefore, the objective of this experiment was to determine the effects of nitrogen content on yield and phytochemical concentration of Andrographis paniculate planting in sandy soils. Complete randomized design experiment was carried out with 5 treatments of different nitrogen content and 5 replications. The five treatments were difference in N-P2O5-K2O of chemical fertilizer as treatment 1 (T1) recommended nutrient content 30-30-30 kg/rai/crop; treatment 2 (T2) 30-0-30; treatment 3 (T3) 15-0-30; treatment 4 (T4) 7.5-0-30 and treatment 5 (T5) 0-0-30. The fertilizer was split evenly and applied for 3 times 5, 21 and 41 days after planting. Fresh mass (FM) and dry mass (DM) of root and shoot, length of root and shoot, total chlorophyll, andrographolide content, H2O2 content, nitrogen and potassium concentrations in Andrographis paniculate were collected at harvest stage. The results showed that fresh and dry mass of shoot and root of T3 was significantly higher than other treatments. Root length, and root and shoot mass ratio of T1 and T2 was significant lowest among treatments. Nitrogen concentration in leave had positive correlation with total chlorophyll at r = 0.73, consistency with nitrogen application. H2O2 did not differ significantly between treatments. Andrographolide content in plant (andrographolide by weight multiplied with shoot dry mass) was significant highest for treatment 3 (50% of recommended nitrogen). We concluded that nitrogen content reduction could increase phytochemical concentration with no effect on Andrographis paniculate yield.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กรมการแพทย์แผนไทยและการแพทย์ทางเลือก. 2564. ข้อควรรู้เกี่ยวกับการใช้ “สารแอนโดรกราโฟไลด์” ในผลิตภัณฑ์ “ฟ้าทะลายโจร” เพื่อ “การรักษาโควิด-19”. (พิมพ์ครั้งที่ 1). บริษัทบียอนด์ พับลิสซิ่ง จำกัด. กรุงเทพฯ. 16 หน้า.
กรมวิชาการเกษตร. 2564. คู่มือสำหรับเกษตรกร การผลิตฟ้าทะลายโจร. กรมวิชาการเกษตร.
ทัศนีย์ อัตตะนันท์ และจงรักษ์ จันทร์เจริญสุข. 2542. แบบฝึกหัดและคู่มือปฏิบัติการการวิเคราะห์ดินและพืช. ภาควิชาปฐพีวิทยา มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.
ธัญญกานต์ เซ้งเครือ. 2565. รายงานความก้าวหน้าโครงการทดสอบสาธิตการปลูกพืชสมุนไพรตามศักยภาพของพื้นที่สนับสนุนเป้าหมายการขับเคลื่อนและพัฒนาคุณภาพวัตถุดิบสมุนไพรของกระทรวงเกษตรและสหกรณ์. ศูนย์ศึกษาวิธีการฟื้นฟูที่ดินเสื่อมโทรมเขาชะงุ้มอันเนื่องมาจากพระราชดำริ.
ยงยุทธ โอสถสภา. 2558. ธาตุอาหารพืช. (พิมพ์ครั้งที่ 4). สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์.
ยงยุทธ โอสถสภา. 2559. ความเครียดของพืชและการบรรเทาความเครียด. วารสารดินและปุ๋ย 38: 47-78.
Ali, S., A. Hafeez, X. Ma, S. Atta Tung and G. Yang. 2020. Relative potassium ratio balanced the carbon-nitrogen assimilation in cotton leaf under reducing nitrogen application. Journal of Soil Science and Plant Nutrition 20: 761-774.
Allahdadi, M. and P. Farzane. 2018. Influence of different levels of nitrogen fertilizer on some phytochemical characteristics of artichoke (Cynara scolymus L.) leaves. Journal of Medicinal Plants Studies 6(1): 109-115.
Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1-15.
Bassi, D., M. Menossi and L. Mattiello. 2018. Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Scientific Reports 8: 2327. doi:10.1038/s41598-018-20653-1.
Bojović, B. and A. Marković. 2009. Correlation between nitrogen and chlorophyll content in wheat (Triticum aestivum L.). Kragujevac J. Sci. 31: 69-74.
Borquaye, L.S., G. Darko, M.K. Laryea, E.N. Gasu, N.A.A. Amponsah and E.N.J.C.F. Appiah. 2017. Nutritional and anti-nutrient profiles of some Ghanaian spices. 3: 1348185.
Bremner, J.M. 1965. Total Nitrogen. Methods of Soil Analysis, pp. 1149-1178. In A.G. Norman (eds.), Agronomy Monographs. https://doi.org/10.2134/agronmonogr9.2.c32.
Chen, J., L. Liu, Z. Wang, Y. Zhang, H. Sun and S. Song. 2020. Nitrogen fertilization increases root growth and coordinates the root–shoot relationship in cotton. 11. doi:10.3389/fpls.2020.00880.
Cui, J., I. Pottosin, E. Lamade and G. Tcherkez. 2020. What is the role of putrescine accumulated under potassium deficiency? Plant, Cell & Environment 43: 1331-1347.
Huang, H., F. Ullah, D.-X. Zhou, M. Yi and Y. Zhao. 2019. Mechanisms of ROS regulation of plant development and stress responses. 10. doi:10.3389/fpls.2019.00800.
Kishorekumar, R., M. Bulle, A. Wany and K.J. Gupta. 2020. An Overview of Important Enzymes Involved in Nitrogen Assimilation of Plants. Methods in molecular biology (Clifton, N.J.) 2057: 1-13. doi:10.1007/978-1-4939-9790-9_1.
Ncube, B. and J. Van Staden. 2015. Tilting plant metabolism for improved metabolite biosynthesis and enhanced human benefit. Molecules (Basel, Switzerland) 20: 12698-12731. doi:10.3390/molecules200712698.
Schroder, J.L., H. Zhang, K. Girma, W.R. Raun, C.J. Penn and M.E.J.S.S.S.o.A.J. Payton. 2011. Soil acidification from long-term use of nitrogen fertilizers on winter wheat. 75: 957-964.
Shitan, N. 2016. Secondary metabolites in plants: transport and self-tolerance mechanisms. Bioscience, Biotechnology, and Biochemistry 80: 1283-1293. doi:10.1080/09168451.2016.1151344.
Singh, V.K., B.S. Dwivedi, S.S. Rathore, R.P. Mishra, T. Satyanarayana and K. Majumdar. 2021. Timing Potassium Applications to Synchronize with Plant Demand, pp. 363-384. In T.S. Murrell (eds.), Improving Potassium Recommendations for Agricultural Crops.
Sun, J., W. Li, C. Li, W. Chang, S. Zhang and Y. Zeng. 2020. Effect of different rates of nitrogen fertilization on crop yield, soil properties and leaf physiological attributes in banana under subtropical regions of China. 11. doi:10.3389/fpls.2020.613760.
Uysal, E. 2018. Effects of nitrogen fertilization on the chlorophyll content of apple. Fruit Science 5: 12-17.
Velikova, V., I. Yordanov and A. Edereva. 2000. Oxidative stress and some antioxidant systems in acid rain treated bean plants. Protective role of exogenous polyamines. Plant Sci. 151: 59-66.
Wongkittipong, R., L. Prat, S. Damronglerd and C. Gourdon. 2004. Solid-liquid extraction of andrographolide from plants—experimental study, kinetic reaction and model. Separation and Purification Technology 40: 147-154. doi:https://doi.org/10.1016/j.seppur.2004.02.002.
Zhang, H., H. Rong and D. Pilbeam. 2007. Signaling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. Journal of experimental botany 58: 2329-2338. doi:10.1093/jxb/erm114.
Zhang, X., E.A. Davidson, D.L. Mauzerall, T.D. Searchinger, P. Dumas and Y. Shen. 2015. Managing nitrogen for sustainable development. Nature 528: 51-59. doi:10.1038/nature15743.