Effect of monosodium glutamate residue in diet on growth performance of piglet
Main Article Content
Abstract
A study was conducted to investigate the effect of monosodium glutamate residue in the diet on the growth performance of piglets. Twelve male piglets with an average weight of 11 kilograms were divided into four experimental groups: Group 1, the control group (unsupplemented with monosodium glutamate); Group 2, feed supplemented with 1% monosodium glutamate; Group 3, feed supplemented with 2% monosodium glutamate; and Group 4, feed supplemented with 3% monosodium glutamate. The results showed no statistically significant differences in daily feed intake and average daily gain (ADG) between the groups (P > 0.05). The 2% monosodium glutamate group had a greater ADG than the other groups. Regarding the feed conversion rate (FCR), the group supplemented with 1% monosodium glutamate had a greater FCR (P < 0.05) compared to the other groups. The calculation of feed cost per gain (FCG) revealed that the group supplemented with 1% monosodium glutamate had the lowest cost at 43.45 baht, followed by the control group at 44.75 baht, and the groups supplemented with 2% and 3% monosodium glutamate at 45.48 and 47.16 baht, respectively. In conclusion, 2% monosodium glutamate in the diet is beneficial for growth performance compared to the feed cost per body weight, potentially leading to a shorter raising period. It can be used in feed without having a negative effect on productive performance.
Article Details
References
Al-Badri, G., Leggio, G. M., Musumeci, G., Marzagalli, R., Drago, F., & Castorina, A. (2018). Tackling dipeptidyl peptidase IV in neurological disorders. Neural Regeneration Research, 13(1), 26-34. doi: 10.4103/1673-5374.224365
Burrin, D. G., & Stoll, B. (2009). Metabolic fate and function of dietary glutamate in the gut. American Journal of Clinical Nutrition, 90(3), 850s-856s. doi: 10.3945/ajcn.2009.27462Y
Dai, Z. L., Li, X. L., Xi, P. B., Zhang, J., Wu, G., & Zhu, W. Y. (2012). Metabolism of select amino acids in bacteria from the pig small intestine. Amino Acids, 42(5), 1597-1608. doi: 10.1007/s00726-011-0846-x
Dai, Z. L., Wu, G., & Zhu, W. Y. (2011). Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Frontiers in Bioscience, 16(5), 1768-1786. doi: 10.2741/3820
Dai, Z. L., Zhang, J., Wu, G., & Zhu, W.Y. (2010). Utilization of amino acids by bacteria from the pig small intestine. Amino Acids, 39(5), 1201–1215. doi: 10.1007/s00726-010-0556-9
Gabriel, A. S., & Uneyama, H. (2013). Amino acid sensing in the gastrointestinal tract. Amino Acids, 45(3), 451–461. doi: 10.1007/s00726-012-1371-2
Gabriel, A., S. Nakamura, E., Uneyama, H., & Torii, K. (2009). Taste, visceral information and exocrine reflexes with glutamate through umami receptors. The Journal of Medical Investigation, 56(Suppl), 209-217. doi: 10.2152/jmi.56.209
Herkelman, K. L., Cromwell, G. L., Stahly, T. S., Pfeiffer, T. W., & Knabe, D. A. (1992). Apparent digestibility of amino acids in raw and heated conventional and low-trypsin-inhibitor soybeans for pigs. Journal of Animal Science, 70(3), 818-826. doi: 10.2527/1992.703818x
Holst, J. J. (2007). The physiology of glucagon-like peptide 1. Physiological Reviews, 87(4), 1409-1439. doi: 10.1152/physrev.00034.2006
Kananurak, P. (1987). Effect of fermented mother liquid (FML) supplementation to growing and finishing swine ration. Agriculture and Natural Resources, 21(3), 263-270. (in Thai)
Kirchgessner, A. L. (2001). Glutamate in the enteric nervous system. Current Opinion in Pharmacology, 1(6), 591-596. doi: 10.1016/S1471-4892(01)00101-1
Lalles, J. P., Bosi, P., Smidt, H., & Stokes, C. R. (2007). Weaning- a challenge to gut physiologists. Livestock Science, 108(1-3), 82-93. doi: 10.1016/j.livsci.2007.01.091
Luise, D., Correa, F., Chalvon-Demersay, T., Galosi, L., Rossi, G., Lambert, W., Bosi, P., & Trevisi, P. (2022). Supplementation of mixed doses of glutamate and glutamine can improve the growth and gut health of piglets during the first 2 weeks post-weaning. Scientific Reports, 12(1), 14533. doi: 10.1038/s41598-022-18330-5
National Research Council (NRC). (1998). Nutrient requirements of swine (10th ed.). Washington, D. C., United States: National Academy Press.
Padunglerk, A., Siwichai, S., Hongyantrachai, S., Prasanpanich, S., & Kongmun, P. (2015). Utilization of monosodium glutamate by-product (TxML) as protein source for lactating dairy cows diet on milk yield, milk qualities and economic value. Proceedings of the 52nd Kasetsart university annual conference (pp. 33-39). Bangkok, Thailand: Kasetsart University. (in Thai)
Reeds, P. J., Burrin, D. G., Stoll, B., Jahoor, F., Wykes, L., Henry, J., & Frazer, M. E. (1997). Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. American Journal of Physiology-Endocrinology and Metabolism, 273(2), E408-E415. doi: 10.1152/ajpendo.1997.273.2.E408
Rezaei, R., Gabriel, A. S., & Wu, G. (2022). Dietary supplementation with monosodium glutamate enhances milk production by lactating sows and the growth of suckling piglets. Amino Acids, 54(7), 1055-1068. doi: 10.1007/s00726-022-03147-3
Rezaei, R., Knabe, D. A., Tekwe, C. D., Dahanayaka, S., Ficken, M. D., Fielder, S. E., Eide, S. J., Lovering, S. L., & Wu, G. (2013). Dietary supplementation with monosodium glutamate is safe and improves growth performance in post weaning pigs. Amino Acids, 44(3), 911-923. doi: 10.1007/s00726-012-1420-x
Setthithon, S. (2021). Thailand food market report. Accessed June 2, 2027. Retrieved from https://fic.nfi.or.th/upload/market_overview/pdf325.
Smriga, M., & Torii, K. (2000). Release of hypothalamic norepinephrine during MSG intake in rats fed normal and nonprotein diet. Physiology & Behavior, 70(3-4), 413–415. doi: 10.1016/S0031-9384(00)00262-6
Thai Vet Nutri Tech Co., LTD. (n.d.). Analyzed chemical composition and amino acid of monosodium glutamate residue. Chon Buri, Thailand: Thai Vet Nutri Tech Co., LTD.
Umami Information Center. (n.d.). Discoverer of umami Kikunae Ikeda. Accessed April 5, 2024. Retrieved from https://www.umamiinfo.com/ikedakikunae/.
Wang, Z., Zhang, J., Wu, P., Luo, S., Li, J., Wang, Q., Huang, P., Li, Y., Ding, X., Hou, Z., Wu, D., Huang, J., Tu, Q., & Yang, H. (2020). Effects of oral monosodium glutamate administration on serum metabolomics of suckling piglets. Journal of Animal Physiology and Animal Nutrition, 104(1), 269-279. doi. 10.1111/jpn.13212
Wu, G. (2010). Functional amino acids in growth, reproduction, and health. Advances in Nutrition, 1(1), 31-37. doi: 10.3945/an.110.1008
Wu, G. Y., & Morris Jr, S. M. (1998). Arginine metabolism: nitric oxide and beyond. Biochemical Journal, 336(1), 1-17. doi: 10.1042/bj3360001
Yang, D., Li, H., Jia, X., Yu, F., Wang, G., Zhang, Y., Wang, W., Zang, L., & Shi, F. (2023). Carbon footprint of monosodium glutamate production in China. Chemical Engineering Transactions, 103, 739-744. doi. 10.3303/CET23103124