The potential of Cannabis sativa extract to inhibit pathogens in animals
Main Article Content
Abstract
This research was aimed to screen the antimicrobial activities of two varieties of Cannabis sativa (FoiThongphuphayon cv. and Hanggrarok Roei-Et cv.) leaf extracts against pathogens including bacteria causing mastitis in dairy cows and some yeasts and filamentous fungi isolated from dermatitis and respiratory disease affected animals. Crude extracts from the leaves of cannabis were obtained using extractions by various solvents including ethanol, methanol, acetone, and chloroform. Disc diffusion was used as an antimicrobial and antifungal activity screening method, and minimum inhibitory concentration (MIC) and minimum bacteriocidal/fungicidal concentration (MBC/MFC) were further measured using the micro broth dilution method. The methanol extracts from both varieties of cannabis were generally effective in inhibiting most of the tested bacterial strains including three gram-positive: Staphylococcus aureus A0527, Staphylococcus haemolyticus A12321, and Staphylococcus pneumonia 001.12, and four gram-negative bacteria: Pseudomonas aeruginosa A11015, Mycoplasma pneumoniae 001.1, Klebsiella pneumoniae 001.3 and Escherichia coli A24622 at 50 µg/ml MIC and 400 µg/ml MBC, except for Staphylococcus faecalis 001.9 resisting inhibition. The methanol extracts were also effective against the tested dermatitis-causing yeasts and fungus including Candida albican, Malassesia pachydermatis, Trichopyton sp., as well as the respiratory system-affecting fungus, Cryptococcus neoformans, at 50 µg/ml MIC and 400 µg/ml MBC. Thus, the extracts from Cannabis are promising and should be promoted to be used clinically for clinical usage as treatment agents against pathogens, and also contain the potential to be used in the pharmaceutical industry going forward.
Article Details
References
Abdullah Sani, N., Sawei, J., Ratnam, W., & Abdul Rahman, Z. (2018). Physical, antioxidant and antibacterial properties of rice (Oryza sativa L.) and glutinous rice (Oryza sativa var. glutinosa) from local cultivators and markets of Peninsular, Malaysia. International Food Research Journal, 25(6), 2328-2336.
Anjum, M., Arooj, Z. E., Azam, S., Rehman, P., & Khadim, J. (2018). Evaluation of antimicrobial activity and ethnobotanical study of Cannabis sativa L.Pure and Applied Biology, 7(2),706-713.
Appendino, G., Gibbons, S., Giana, A., Pagani, A., Grassi, G., Stavri, M., Smith, E., & Rahman, M. M. (2008). Antibacterial Cannabinoids from Cannabis sativa: a structure−activity study.Journal of Natural Products, 71(8), 1427–1430. doi: 10.1021/np8002673
Arsheewa, W. (2016). Prevalence of carbapenemase enzyme in clinical isolates of carbapenem-resistant Enterobacteriaceae from Prapokklao Hospital in 2012 – 2013. The Journal of Prapokklao Hospital Clinical Medical Education Center, 33(4), 314-325. (in Thai)
Blaskovich, M. A. T., Kavanagh, A. G., Elliott, A. G., Zhang, B., Ramu, S., Amado, M., Lowe, G. J., Hinton, A. O., Pham, D. M. T., Zuegg, J., Beare, N., Quach, D., Sharp, M. D., Pogliano, J., Rogers, A. P., Lyras, D., Tan, L., West, N. P., Crawford, D. W., Peterson, M. L., Callahan, M., & Thurn, M. (2021).The antimicrobial potential of cannabidiol. Communications Biology, 4(1), 7. doi: 10.1038/s42003-020-01530-y
Chakraborty, S., Afaq, N., Singh, N., & Majumdar, S. (2018). Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus. Journal of Integrative Medicine, 16(5), 350-357. doi: 10.1016/j.joim.2018.07.005
Farha, M. A., El-Halfawy, O. M., Gale, R. T., MacNair, C. R., Carfrae, L. A., Zhang, X., Jentsch, N. G., Magolan, J., & Brown, E.D.(2020).Uncovering the hidden antibiotic potential of Cannabis. American Chemical Society Infectious diseases, 6(3), 338-346. doi: 10.1021/acsinfecdis.9b00419
Frassinetti, S., Gabriele, M., Moccia, E., Longo, V., & Gioia, D. D. (2020). Antimicrobial and antibiofilm activity of Cannabis sativa L. seeds extract against Staphylococcus aureus and growth effects on probiotic Lactobacillus spp. LWT-Food Science and Technology, 124(5), 109149. doi:10.1016/j.lwt.2020.109149
Gwinn, K. D., Hansen, Z., Kelly, H. , & Ownley, H. B. (2022). Diseases of Cannabis sativa caused by diverse Fusarium species. Frontiers in Agronomy, 3, 796062. doi: 10.3389/fagro.2021.796062
Galletta, M., Reekie, T. A., Nagalingam, G., Bottomley A. L., Harry, E. J., Kassiou, M., & Triccas, J. A. (2020). Rapid antibacterial activity of cannabichromenic acid against methicillin-resistant Staphylococcus aureus. Antibiotics, 9(8), 523. doi: 10.3390/antibiotics9080523
Isahq, M. S, Afridi, M. S., Ali, J., Hussain, M. M., Ahmad, S., & Kanwal, F. (2015). Proximate composition, phytochemical screening, GC-MS studies of biologically active cannabinoids and antimicrobial activities of Cannabis indica. Asian Pacific Journal of Tropical Disease, 5(11), 897–902. doi: 10.1016/s2222-1808(15)60953-7
Khan, I. H., & Javaid, A. (2020). Antifungal activity of leaf extract of Cannabis sativa against Aspergillus flavipes. Pakistan Journal of Weed Science Research, 26(4), 447-453. doi: 10.28941/pjwsr.v26i4.883
Karas, J. A., Wong, L. J. M., Paulin, O. K. A., Mazeh, A. C., Hussein, M. H., Li, J., & Velkov, T. (2020). The antimicrobial activity of cannabinoids. Antibiotics, 9 (7), 406. doi: 10.3390/antibiotics9070406
Martinenghi, L. D., Jonsson, R., Lund, T., & Jenssen, H. (2020). Isolation, purification, and antimicrobial characterization of cannabidiolic acid and cannabidiol from Cannabis sativa L. Biomolecules, 10(6), 900. doi: 10.3390/biom10060900
National Antimicrobial Resistance Surveillance Center, Thailand. (2022). Thailand’s integrate antimicrobial resistance surveillance with one health approach guideline. Accessed March 11, 2023. Retrieved from http://narst.dmsc.moph.go.th/. (in Thai)
Nadir, I., Rana, N. F., Ahmad, N. M., Tanweer, T., Batool, A., Taimoor, Z., Riaz, S., & Ali, S. M. (2020). Cannabinoids and terpenes as an antibacterial and antibiofouling promotor for PES water filtration membranes. Molecules, 25(3)), 691. doi: 10.3390/molecules25030691
Nalli, Y., Arora, P., Hassan, S. R. U., & Ali, A. (2018). Chemical investigation of Cannabis sativa leading to the discovery of a prenylspirodinone with anti-microbial potential. Tetrahedron Letters, 59(25), 2470-2472.
Oliver., S. P. (2004). Microbiological procedures for the diagnosis of bovine udder infection and determination of milk quality (4th ed. ). Wisconsin: National Mastitis Council (NMC).
Schofs, L., Sparo, M. D., & Bruni, S. F. S. (2021). The antimicrobial effect behind Cannabis sativa. Pharmacology Research and Perspectives, 9(2), e00761. doi: 10.1002/prp2.761
Sharma, A., Gupta, V. K., & Pathania, R. (2019).Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian Journal of Medical Research, 149(2), 129-145. doi: 10.4103/ijmr.IJMR_2079_17
Singh, P., Pandit, S., Garnæs, J., Tunjic, S., Mokkapati, V. R., Sultan, A., Thygesen, A., Mackevica, A., Mateiu, R. V., Daugaard, A. E., Baun, A., & Mijakovic, I. (2018). Green synthesis of gold and silver nanoparticles from Cannabis sativa industrial hemp) and their capacity for biofilm inhibition. International Journal of Nanomedicine, 13, 3571-3591. doi: 10.2147/IJN.S157958
Swain, S., Barik, S. K., Behera, T., Nayak, S. K., Sahoo, S. K., Mishra, S. S., & Swain, P. (2016). Green synthesis of gold nanoparticles using root and leaf extracts of Vetiveria zizanioides and Cannabis sativa and its antifungal activities.BioNanoScience, 6,(3)205-213. doi: 10.1007/s12668-016-0208-y