Development of blended Kombucha from herbal teas and flower teas and their potential health benefits
Main Article Content
Abstract
The purpose of this research was to develop blended Kombucha from various herbal teas and flower teas, to study the microbial population of acetic acid bacteria and yeast, to compare antioxidant activity, α-glucosidase inhibition activity, and to assess the sensory quality of the beverage. An experimental design with nine formulas of Kombucha herbal teas and flower teas was set up. The results showed that the population of acetic acid bacteria and yeast differed significantly in each blended Kombucha formula (p < 0.05). The highest acetic acid bacteria population was observed in formula 3 (Oolong tea, Jiaogulan, and Chamomile flower) at 8.45 ± 0.02 log CFU/ml. A maximum of yeast cells was found in formula 5 (Oolong tea, Jasmine rice leaves, and Roses) at 6.19 ± 0.02 log CFU/ml. Blended Kombucha formulas 3, 4 (Oolong tea, Jasmine rice leaves, and Chamomile flower), and 5 showed the highest acetic acid content at 1 % and a pH of 2.53. The antioxidant activity of blended Kombucha was determined using the DPPH method, with the highest antioxidant activity observed by inhibiting 87.09 ± 0.006 % of trolox equivalent with formula 8 (Oolong tea, Sacha inchi, and Roses). The high phenolic content was found in formula 3 blended Kombucha at 0.398 ± 0.002 mg gallic acid equivalents per milliliter. Evaluation of the α-glucosidase inhibition activity of blended Kombucha was performed, revealing that formula 5 obtained the best inhibition of α-glucosidase activity with an IC50 value of 43.62 ± 1.28 ppm. Sensory evaluation of blended Kombucha samples showed that formulas 4 and 7 had the highest overall liking scores, with scores of 7.56 ± 1.89 and 7.32 ± 1.75, respectively. Therefore, this study highlights the best blended Kombucha formulation using herbal teas and flower teas as alternative raw materials (Oolong tea, Jasmine rice leaves, and Chamomile flower), which received the highest score in sensory acceptance and contains functional properties.
Article Details
References
Adam, Z., Hassali, H. A., & Razali, R. (2016). Phytochemicals content, antioxidant and α-glucosidase inhibition activity of Bouea macrophylla Griff seed extract. Accessed April 30, 2024. Retrieved from https://inis.iaea.org/collection/NCLCollectionStore/_Public/48/050/48050408.pdf?r=1
Amarasinghe, H., Weerakkody, N. S., & Waisundara, V. Y. (2018). Evaluation of physicochemical properties and antioxidant activities of Kombucha “Tea Fungus” during extended periods of fermentation. Food Science & Nutrition, 6(3), 659-665. doi: 10.1002/fsn3.605
Bauer-Petrovska, B., & Petrushevska-Tozi, L. (2001). Mineral and water soluble vitamin content in the Kombucha drink. International Journal of Food Science & Technology, 35(2), 201-205. doi: 10.1046/j.1365-2621.2000.00342.x
Bhattacharya, S., Gachhui, R., & Sil, P. C. (2013). Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food and Chemical Toxicology, 60, 328-340. doi: 10.1016/j.fct.2013.07.051
Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., & Gachhui, R. (2016). Kombucha tea fermentation: microbial and biochemical dynamics. International Journal of Food Microbiology, 220, 63-72. doi: 10.1016/j.ijfoodmicro.2015.12.015
Coelho, R. M. D., de Almeida, A. L., do Amaral, R. Q. G., da Mota, R. N., & de Sousa, P. H. M. (2020). Kombucha: review. International Journal of Gastronomy and Food Science, 22(1), 100272. doi: 10.1016/j.ijgfs.2020.100272
Dechakhamphu, A., Wongchum, N., Chumroenphat, T., Tanomthong, A., Pinlaor, S., & Siriamornpun, S. (2023). In vitro and in vivo evaluation for antioxidant and anti-diabetic properties of Cyperus rotundus L. Kombucha. Food, 12(22), 4059. doi: 10.3390/foods12224059
Emiljanowicz, K. E., & Malinowska-Pa´nczyk, E. (2020). Kombucha from alternative raw materials - the review. Critical Reviews in Food Science and Nutrition, 60(19), 3185-3194. doi: 10.1080/10408398.2019.1679714
Filipe-Ribeiro, L., Cosme, F., & Nunes, F. M. (2019). New molecularly imprinted polymers for reducing negative volatile phenols in red wine with low impact on wine colour. Food Research International, 129(1260), 108855. doi: 10.1016/j.foodres.2019.108855
Fossen, T., Cabrita L., & Andersen O. M. (1998). Colour and stability of pure anthocyanins influenced by pH including the alkaline region. Food Chemistry, 63(4), 435-440. doi: 10.1016/S0308-8146(98)00065-X
Gaggìa, F., Baffoni, L., Galiano, M., Nielsen, D. S., Jakobsen, R. R., Castro-Mejía, J. L., Bosi, S., Truzzi, F., Musumeci, F., Dinelli, G., & Di Gioia, D. (2018). Kombucha beverage from green, black and rooibos teas: a comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients, 11(1), 1. doi: 10.3390/nu11010001
Gramza-Michałowska, A., Kulczynski, B., Xindi, Y., & Gumienna, M. (2016). Research on the effect of culture time on the Kombucha tea beverage’s antiradical capacity and sensory value. Acta Scientiarum Polonorum, Technologia Alimentaria, 15(4), 447-457. doi: 10.17306/J.AFS.2016.4.43
Hardoko, H., Harisman, E. K., Puspitasari, Y. E., & Garrido, G. (2020). The Kombucha from Rhizophora mucronata Lam. herbal tea: characteristics and the potential as an antidiabetic beverage. Journal of Pharmacy & Pharmacognosy Research, 8(5), 410-421. doi:10.56499/jppres20.810_8.5.410
Huang, G., Yasir, M., Zheng, Y., & Khan, I. (2022). Prebiotic properties of jiaogulan in the context of gut microbiome. Food Science & Nutrition, 10(3), 731-739. doi: 10.1002/fsn3.2701
Jayabalan, R., Marimuthu, S., & Swaminathan, K. (2007) Changes in content of organic acids and tea polyphenols during Kombucha tea fermentation. Food Chemistry, 102(1), 392-398. doi: 10.1016/j.foodchem.2006.05.032
Kapp, J. M., & Sumner, W. (2019). Kombucha: a systematic review of the empirical evidence of human health benefit. Annals of Epidemiology, 30, 66-70. doi: 10.1016/j.annepidem.2018.11.001
Kim, J., & Adhikari, K. (2020). Current trends in Kombucha: marketing perspectives and the need for improved sensory research. Beverages, 6(1), 15. doi: 10.3390/beverages6010015
Koh, L. W., Wong, L. L., Loo, Y. Y., Kasapis, S., & Huang D. (2010). Evaluation of different teas against starch digestibility by mammalian glycosidases. Journal of Agricultural and Food Chemistry, 58(1), 148-154. doi: 10.1021/jf903011g
Laureys, D., Britton, S. J., & De Clippeleer, J. (2020). Kombucha tea fermentation: a review. Journal of the American Society of Brewing Chemists, 78(3), 165-174. doi: 10.1080/03610470.2020.1734150
Leal, J. M., Suárez, L. V., Jayabalan, R., Oros, J. H., & Escalante-Aburto, A. (2018) A review on health benefits of Kombucha nutritional compounds and metabolites. CyTA – Journal of Food, 16(1), 390-399. doi: 10.1080/19476337.2017.1410499
Lee, J., & Chambers, D. H. (2009). Sensory descriptive evaluation: brewing methods affect flavour of green tea. Asian Journal of Food and Agro-Industry, 2(4), 427-439.
Lee, S. Y., Mediani, A., Nur Ashikin, A. H., Azliana, A. B. S., & Abas, F. (2014). Antioxidant and α-glucosidase inhibitory activities of the leaf and stem of selected traditional medicinal plants. International Food Research Journal, 21(1), 165- 172.
Leonarski, E., Cesca, K., Borges, O. M. A., de Oliveira, D., & Poletto, P. (2021). Typical Kombucha fermentation: kinetic evaluation of beverage and morphological characterization of bacterial cellulose. Journal of Food Processing and Preservation, 45(12), e16100. doi: 10.1111/jfpp.16100
Liu, T., Song, L., Wang, H., & Huang, D. (2011). A high-throughput assay for quantification of starch hydrolase inhibition based on turbidity measurement. Journal of Agricultural and Food Chemistry, 59(18), 9756-9762. doi: 10.1021/jf202939d
Lobo, R. O., Dias, F. O., & Shenoy, C. K. (2017). Kombucha for healthy living: evaluation of antioxidant potential and bioactive compounds. International Food Research Journal, 24(2), 541-546.
Lu, M., Yuan, B., Zeng, M., & Chen, J. (2011). Antioxidant capacity and major phenolic compounds of spices commonly consumed in China. Food Research International, 44(2), 530-536. doi: 10.1016/j.foodres.2010.10.055
Mai, T. T., Thu, N. N., Tien, P. G., & Van Chuyen, N. (2007). Alpha-glucosidase inhibitory and antioxidant activities of Vietnamese edible plants and their relationships with polyphenol contents. Journal of Nutritional Science and Vitaminology, 53(3), 267-276. doi: 10.3177/jnsv.53.267
Mahmoudi, E., Saeidi, M., Marashi, M. A., Moafi, A., Mahmoodi, V., & Zamani, M. Z. (2016). In vitro activity of Kombucha tea ethyl acetate fraction against Malassezia species isolated from seborrhoeic dermatitis. Current Medical Mycology, 2(4), 30-36. doi: 10.18869/acadpub.cmm.2.4.30
Matthäus, B. (2002). Antioxidant activity of extracts obtained from residues of different oil seeds. Journal of Agricultural and Food Chemistry, 50(12), 3444-3452. doi: 10.1021/jf011440s
Marsh, A. J., O’Sullivan, O., Hill, C., Ross, R. P., & Cotter P. D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple Kombucha (tea fungus) samples. Food Microbiology, 38(4), 171-178. doi: 10.1016/j.fm.2013.09.003
Majid A. A., Suroto, D. A., Utami, T., & Rahayu E. S. (2023). Probiotic potential of Kombucha drink from butterfly pea (Clitoria ternatea L.) flower with the addition of Lactiplantibacillus plantarum subsp. Plantarum Dad-13. Biocatalysis and Agricultural Biotechnology, 51(4), 102776. doi: 10.1016/j.bcab.2023.102776
Malbaša, R. V., Lončar E. S., Vitas J. S., & Čanadanović-brunet, J. M. (2011). Influence of starter cultures on the antioxidant activity of Kombucha beverage. Food Chemistry, 127(4), 1727-1731. doi: 10.1016/j.foodchem.2011.02.048
Muhialdin, B. J., Osman, F. A., Muhamad, R., Wan Sapawi, C. W. N. S. C., Anzian, A., Voon, W. W. Y., & Meor Hussin, A. S. (2019). Effects of sugar sources and fermentation time on the properties of tea fungus (Kombucha) beverage. International Food Research Journal, 26(2), 481–487.
Nakagawa, M. (1975). Contribution of green tea constituents to the intensity of taste element of brew. Nippon Shokuhin Kogyo Gakkaishi, 22(2), 59-64. doi: 10.3136/nskkk1962.22.59
Neffe-Skocinska, K., Sionek, B., Scibisz, I., & Kołozyn-Krajewska, D. (2017). Acid contents and the effect of fermentation condition of Kombucha tea beverages on physicochemical, microbiological and sensory properties. CyTA - Journal of Food, 15(4), 601-607. doi: 10.1080/19476337.2017.1321588
Selma, M. V., Espín, J. C., & Tomás-Barberán, F. A. (2009). Interaction between phenolics and gut microbiota: role in human health. Journal of Agricultural and Food Chemistry, 57(15), 6485-6501. doi: 10.1021/jf902107d
Spedding, G. (2015). So what is Kombucha? An alcoholic or a nonalcoholic beverage? A brief selected literature review and personal reflection. BDAS, LLC 2015. Accessed December 8, 2023. Retrieved from http://alcbevtesting.com/wpcontent/uploads/2015/06/WhatIsKombucha_BDASLLC_WPSPNo2_ Oct-4-2015.pdf
Sugiwati, S., Setiasih, S., & Afifah, E. (2009). Antihyperglycemic activity of the Mahkota Dewa (Phaleria macrocarpa (Scheff.) Boerl.) leaf extracts as an alpha-glucosidase inhibitor. Makara Journal of Health Research, 13(2), 74-78. doi: 10.7454/msk.v13i2.364
Sudtasarn, G., Jongdee, S., & Kenlhaem, R. (2008). Research and development of green tea from fragrant seedlings. Proceedings of rice and temperate cereal crops annual conference 2008 volume 2/2. (pp.398-406). Bangkok, Thailand: Division of Rice Research and Development. (in Thai)
Watawana, M. I., Jayawardena, N., Gunawardhana, C. B., & Waisundara, V. Y. (2015). Health, wellness, and safety aspects of the consumption of Kombucha. Journal of Chemistry, 11, 1-11. doi: 10.1155/2015/591869
Yin, Z., Zhang, W., Feng, F., Zhang, Y., & Kang, W. (2014). α-Glucosidase inhibitors isolated from medicinal plants. Food Science and Human Wellness, 3(3–4), 136-174. doi: 10.1016/j.fshw.2014.11.003
Zeng, L., Zhou, X., Su, X., & Yang, Z. (2020). Chinese oolong tea: an aromatic beverage produced under multiple stresses. Trends in Food Science & Technology, 106(25), 242-253. doi: 10.1016/j.tifs.2020.10.001
Zhang, S., Cheng, M., Li, Z., Guan, S., Cai, B., Li, Q., & Rong, S. (2020). Composition and biological activity of rose and jujube kernel after fermentation with Kombucha SCOBY. Journal of Food Processing and Preservation, 44(10), e14758. doi: 10.1111/jfpp.14758
Zou, G., Xiao, Y., Wang, M., & Zhang, H. (2018). Detection of bitterness and astringency of green tea with different taste by electronic nose and tongue. PLoS One, 13(12), e0206517.doi: 10.1371/journal.pone.0206517
Zubaidah, E, Yurista, S., & Rahmadani, N. R. (2018). Characteristic of physical, chemical, and microbiological Kombucha from various varieties of apples. IOP Conference Series: Earth and Environmental Science, 131(1), 012040. doi: 10.1088/1755-1315/131/1/012040