Photosynthetic parameters and total soluble solid of promising sugarcane clones under drought stress condition
Main Article Content
Abstract
Photosynthesis is the major source of organic carbon and energy for plant growth and biomass production. However, drought is one of the crucial factors that affect photosynthesis. Hence, this study aimed to evaluate the change in photosynthetic parameters and TSS (Total soluble solid) under drought stress and the recovery after re-watering in promising sugarcane clones at Khon Kaen Field Crops Research Center (KKFCRC) in 2023. The experimental design was a split plot with 3 replications, main plots were (1) well-watered based on plant requirement, (2) restrict-watered for 19 days, and subplots were the genotypes of sugarcane: (1) KK07-599, (2) KK12(R)-085, (3) KK3/E09-1, (4) LK92-11, and (5) KK3. The results showed that drought reduced the photosynthetic parameters as net photosynthesis (A), transpiration rate (E), and stomatal conductance (gs) while internal CO2concentration (Ci) and TSS tended to be elevated when compared with the homogenous genotype that was irrigated with well-watered, restricted irrigation for 14 days in KK3/E09-1 presented the lowest gs as 0.02 mmolm-2s-1, and A, E, and gs presented high positive correlation in each other. Moreover; photosynthetic parameters were recovered after re-watering, especially in KK07-599 and KK3/E09-1 which could apply to selecting sugarcane breeding or be the study model of sugarcane photosynthesis physiology in Thailand.
Article Details
References
Aidar, S. T., Meirelles, S. T., Oliveira, R. F., Chaves, A. R. M., & Fernandes-Júnior, P. I. (2014). Photosynthetic response of poikilochlorophyllous desiccation-tolerant Pleurostima purpurea (Velloziaceae) to dehydration and rehydration. Photosynthetica, 52(1), 124-133. doi:10.1007/s11099-014-0014-0
Bindon, K. A., & Botha, F. C. (2002). Carbon allocation to the insoluble fraction, respiration and triose-phosphate cycling in the sugarcane culm. Physiologia Plantarum, 116(1), 12-19. doi:10.1034/j.1399-3054.2002.1160102.x
Buakom, W., KrachaI, P., Gonkhamdee, S., Songsri, P., & Jongrungklang, N. (2020). Responses of rooting and physiological characteristics of sugarcanes grown under mimic drought stress as low water potential at early stage. Khon Kaen Agriculture Journal, 48(6), 1442-1457. doi:10.14456/kaj.2020.127
Chaves, M. M., Pereira, J. S., Maroco, I., Rodrigue, M. L., Ricardo, C. P. P., OsÒrio, M. L., Carvalloho, I., Faria, T., & Pinharo, C. (2002). How plants cope with water stress in the field ? photosynthesis and growth. Annals of Botany, 89(7), 907-916. doi:10.1093/aob/mcf105
Chinnasaen, T., Chanachai, S., Pakdeethai, C., Tippayawat, A., Jungpol, P., Boonchim, T., & Pongpanchamit, K. (2023). The change in photosynthetic parameters of sugarcane promising clones under drought stress. Prawarun Agricultural Journal, 20(1), 54-64. doi: 10.14456/paj.2023.7. (in Thai)
Dinh, T. H., Takaragawa, H., Watanabe, K., Nakabaru, M., & Kawamitsu, Y. (2019). Leaf photosynthesis response to change of soil moisture content in sugarcane. Journal Sugar Tech, 21(6), 949–958. doi: 10.1007/s12355-019-00735-8
Doorenbos, J., & Kassem, A.H. (1979). Yield Response to Water. Rome, Italy: Food and Agriculture Organization of the United Nations.
Endres, L., Silva, J. V., Ferreira, V. M., & Barbosa, G. V. de S. (2010). Photosynthesis and water relations in Brazilian sugarcane. The Open Agriculture Journal, 4(1), 31-37. doi: 10.2174/1874331501004010031
Gomathi, R., Vasantha, S. Hemaprabha, G., Alarmelu, S., & Shanthi, R.M. (2011). Evaluation of elite sugarcane clones for drought tolerance. Journal of Sugarcane Research, 1(1), 55 - 62.
Gupta, A. S., Berkowitz, G. A., & Pier, P. A. (1989). Maintenance of photosynthesis at low leaf water potential in wheat. Plant Physiology, 89(4), 1358-1365. doi: 10.1104/pp.89.4.1358
Inman-Bamber, N. G., Bonnett, G. D., Spillman, M. F., Hewitt, M. H., & Glassop, D. (2010). Sucrose accumulation in sugarcane is influenced by temperature and genotype through the carbon source–sink balance. Crop and Pasture Science, 61(2), 111–121. doi: 10.1071/CP09262
Jaiphong, T., Tominaga, J., Watanabe, K., Nakabaru, M., Takaragawa, H., Suwa, R., Ueno, M., & Kawamitsu, Y. (2016). Effects of duration and combination of drought and flood conditions on leaf photosynthesis, growth and sugar content in sugarcane. Plant Production Science, 19(3), 427–437. doi: 10.1080/1343943X.2016.1159520
Kasemsap, P. (2006). Biology 2. Bangkok, Thailand: The Promotion of Academic Olympiad and Development of Science Education Foundation. (in Thai)
Khonghintaisong, J., Songsri, P., & Jongrungklang, N. (2017). Growth and physiological patterns of sugarcane cultivars to mimic drought conditions in late rainy season system. Naresuan University Journal: Science and Technology, 25(2), 102-112. (in Thai)
Leanasawat, N., Kosittrakun, M., Lontom, W., & Songsri, P. (2021). Physiological and agronomic traits of certain sugarcane genotypes grown under field conditions as influenced by early drought stress. Agronomy, 11(11), 2319. doi:10.3390/agronomy11112319
Liu, Y. Y., Li, J., Liu, S. C., Yu, Q., Tong, X. J., Zhu, T. T., Gao, X. X., & Yu, L. X. (2020). Sugarcane leaf photosynthetic light responses and their difference between varieties under high temperature stress. Photosynthetica, 58(4), 1009-1018. doi: 10.32615/ps.2020.038
Medeiros, D. B., da Silva, E. C., Nogueira, R. J. M. C., Teixeira, M. M., & Buckeridge, M. S. (2013). Physiological limitations in two sugarcane varieties under water suppression and after recovering. Theoretical and Experimental Plant Physiology, 25(3), 213–222. doi:10.1590/S2197-00252013000300006
Moore, P. H. (1995). Temporal and spatial regulation of sucrose accumulation in the sugarcane stem. Australian Journal of Plant Physiology, 22(4), 661-679. doi:10.1071/PP9950661
Namwongsa, J., Jongrungklang, N., & Songsri, P. (2019). Genotypic variation in root distribution and physiological responses of sugarcane induced by drought stress. SABRAO Journal of Breeding and Genetics, 51(4), 470-493. doi:10.1101/503912
Paisancharoen, K., Sansayawichai, T., Luanmanee, S., Thippayarugs, S., Chusorn, K., Chuenrung, J., & Pakdeethai, C. (2012). Water requirement and Kc values of Khon Kaen 3 sugarcane variety. Khon Kaen Agriculture Journal, (Suppl. 3),103-114. (in Thai)
Qudsieh, H. Y. M., Yusof, S., Osman, A., & Rahman, R. A. (2001). Physico-chemical changes in sugarcane (Saccharum officinarum var yellow cane) and the extracted juice at different portions of the stem during development and maturation. Food Chemistry,75(2),131-137. doi:10.1016/S0308-8146(00)00294-6
Ribeiro, R. V., Machado, R. S., Machado, E. C., Machado, D. F. S. P., Filho, J. R. M., & Landell, M. G. A. (2013). Revealing drought-resistance and productive patterns in sugarcane genotypes by evaluating both physiological responses and stalk yield. Experimental Agriculture, 49(2), 212–224. doi:10.1017/S0014479712001263
Silva, M de. A., Jifon, J., dos Santos, C. M., Jadoski, C. J., & Da Silva, J. A. (2013). Photosynthetic capacity and water use efficiency in sugarcane genotypes subject to water deficit during early growth phase. Brazilian Archives of Biology and Technology, 56(5), 735-748. doi:10.1590/S1516-89132013000500004
Smith, M. (1992). CROPWAT: a computer Program for irrigation planning and management. Rome, Italy: Food and Agriculture Organization of the United Nations.
Venkataramana, S., Gururaja Rao, P. N., & Naidu, K. M. (1986). The effects of water stress during the formative phase on stomatal resistance and leaf water potential and its relationship with yield in ten sugarcane varieties. Field Crop Research, 13, 345-353. doi:10.1016/0378-4290(86)90035-3
Vu, J. V. C., & Allen Jr, L. H. (2009). Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature. Journal of Plant Physiology, 166(11), 1141-1151. doi: 10.1016/j.jplph.2009.01.003
Wang, J., Zhang, X., Han, Z., Feng, H., Wang, Y., Kang, J., Han, X., Wang, L., Wang, C., Li, H., & Ma, G. (2022). Analysis of physiological indicators associated with drought tolerance in wheat under drought and re-watering conditions. Antioxidants (Basel), 11(11), 2266. doi: 10.3390/antiox11112266
Wang, J., Zhao, T., Yang, B., & Zhang, S. (2017). Sucrose metabolism and regulation in sugarcane. Journal of Plant Physiology & Pathology, 5(4), 1-6. doi: 10.4172/2329-955X.1000167