Development of LAMP assay for detection on lumpy skin disease virus in cattle

Main Article Content

teerayoot chawut
Orapun Arjkumpa
Teerajet Laohasatian
Pawat Seritrakul
Narin Preyavichyapugdee

Abstract

Lumpy skin disease (LSD), caused by a virus of the genus Capripoxvirus (CaPVs), represents a significant economic concern in cattle livestock management. LSD has the potential for rapid transmission, facilitated by blood-sucking insects that serve as vectors for the virus (LSDV). Additionally, transmission can occur through direct contact with infected animals, via the semen of an infected breeder, or transplacentally. The disease is characterized by fever, enlarged lymph nodes, firm and circumscribed nodules on the skin, and ulcerative lesions, particularly on the mucous membranes of the mouth. A key to preventing the spread of LSDV in cattle is rapid and accurate detection. Loop-mediated isothermal amplification (LAMP) assay is a novel technique that works by amplifying the specific target nucleic acid at a constant temperature, which is simple, fast, and easy to use in the field. The objective of this study was to develop a prototype LAMP assay to detect LSDV from various cattle samples and compare it to the conventional PCR assay. The results indicated that, of the 186 samples collected (comprising 100 EDTA blood samples and 86 skin scab samples) from cattle exhibiting clinical signs of lumpy skin disease (LSD), 56.98 % (106/186) tested positive for LSDV using the PCR assay. In contrast, 63.97 % (119/186) tested positive for LSDV using the LAMP assay, suggesting that the LAMP assay demonstrates higher sensitivity compared to the conventional PCR assay. Moreover, sensitivity analysis showed a detection limit of 10-5ng/µL. The specificity analysis test showed no cross-detection with other infectious agents. Additionally, the nucleotide alignment was 100 % identical to the LSDV strains from China, Hong Kong, and Vietnam. The LAMP assay detailed in this report is simple, cost-effective, highly sensitive, and particularly well-suited for the diagnosis of LSDV in laboratories with limited equipment and in resource-constrained rural settings.

Article Details

How to Cite
chawut, teerayoot, Arjkumpa, O., Laohasatian, T. ., Seritrakul, P., & Preyavichyapugdee, . N. . (2024). Development of LAMP assay for detection on lumpy skin disease virus in cattle. Prawarun Agricultural Journal, 21(2), 43–52. https://doi.org/10.14456/paj.2024.35
Section
Research Articles

References

Abutarbush, S. M., Ababneh, M. M., Al Zoubi, I. G., Al Sheyab, O. M., Al Zoubi, M. G., Alekish, M. O., & Al Gharabat, R. J. (2015). Lumpy skin disease in Jordan: disease emergence, clinical signs, complications and preliminary-associated economic losses. Transboundary and Emerging Diseases, 62(5), 549-554. doi: 10.1111/tbed.12177

Arjkumpa, O., Suwannaboon, M., Boonrawd, M., Punyawan, I., Laobannu, P., Yantaphan, S., Bungwai, A., Ponyium, V., Suwankitwat, N., Boonpornprasert, P., Nuansrichay, B., Kaewkalong, S., Ounpomma, D., Charoenlarp, W., Pamaranon, N., Prakotcheo , R., Buameetoop, N., Punyapornwithaya, V., & Songkasupa, T. (2021). First emergence of lumpy skin disease in cattle in Thailand, 2021. Transboundary and Emerging Diseases, 68(6), 3002-3004.

doi: 10.1111/tbed.14246

Awad, W. S., Ibrahim, A. K., Mahran, K., Fararh, K. M., & Abdel Moniem, M. I. (2010). Evaluation of different diagnostic methods for diagnosis of lumpy skin disease in cows. Tropical Animal Health and Production, 42(4), 777-783. doi: 10.1007/s11250-009-9486-5

Bamouh, Z., Hamdi, J., Fellahi, S., Khayi, S., Jazouli, M., Tadlaoui, K. O., Fihri, O. F., Tuppurainen, E., & Elharrak, M. (2021). Investigation of post vaccination reactions of two live attenuated vaccines against lumpy skin disease of cattle. Vaccines (Basel), 9(6), 621. doi: 10.3390/vaccines9060621

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41(D1), D36-D42. doi: 10.1093/nar/gks1195

Cêtre-Sossah, C., Dickmu, S., Kwiatek, O., & Albina, E. (2017). A G-protein-coupled chemokine receptor: a putative insertion site for a multi-pathogen recombinant capripoxvirus vaccine strategy. Journal of Immunological Methods, 448, 112-115. doi: 10.1016/j.jim.2017.05.007

Chibssa, T. R., Sombo, M., Lichoti, J. K., Adam, T. I. B., Liu, Y., Elraouf, Y. A., Grabherr, R., Settypalli, T. B. K., Berguido, F. J., Loitsch, A., Sahle, M., Cattoli, G., Diallo, A., & Lamien, C. E. (2021). Molecular analysis of East African lumpy skin disease viruses reveals a mixed isolate with features of both vaccine and field isolates. Microorganisms, 9(6), 1142. doi: 10.3390 /microorganisms9061142

Chu, Y., Yan, X., Gao, P., Zhao, P., He, Y., Liu, J., & Lu, Z. (2011). Molecular detection of a mixed infection of Goatpox virus, Orf virus, and Mycoplasma capricolum subsp. capripneumoniae in goats. Journal of Veterinary Diagnostic Investigation, 23(4), 786-789. doi: 10.1177/1040638711407883

Elhaig, M. M., Selim, A., & Mahmoud, M. (2017). Lumpy skin disease in cattle: frequency of occurrence in a dairy farm and a preliminary assessment of its possible impact on Egyptian buffaloes. Onderstepoort Journal of Veterinary Research, 84(1), e1-e6. doi: 10.4102/ojvr.v84i1.1393

El-Kholy, A. A., Soliman, H. M. T., & Abdelrahman, K. A. (2008). Polymerase chain reaction for rapid diagnosis of a recent lumpy skin disease virus incursion to Egypt. Arab Journal of Biotechnology. 11(2), 293-302.

El-Tholoth, M., & El-Kenawy, A. A. (2016). G-protein-coupled chemokine receptor gene in lumpy skin disease virus isolates from cattle and water buffalo (Bubalus bubalis) in Egypt. Transboundary and Emerging Diseases, 63(6), e288-e295. doi: 10.1111/tbed.12344

Flannery, J., Shih, B., Haga, I. R., Ashby, M., Corla, A., King, S., Freimanis, G., Polo, N., Tse, A. C. N., Brackman, C. J., Chan, J., Pun, P., Ferguson, A. D., Law, A.., Lycett, S., Batten, C., & Beard, P. M. (2022). A novel strain of lumpy skin disease virus causes clinical disease in cattle in Hong Kong. Transboundary and Emerging Diseases, 69(4), e336-e343. doi: 10.1111/tbed.14304

Gari, G., Waret-Szkuta, A., Grosbois, V., Jacquiet, P., & Roger, F. (2010). Risk factors associated with observed clinical lumpy skin disease in Ethiopia. Epidemiology & Infection, 138(11), 1657-1666. doi: 10.1017/S0950268810000506

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41(41), 95-98.

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-1649. doi:10.1093/bioinformatics/bts199

Kumar, N., Chander, Y., Kumar, R., Khandelwal, N., Riyesh, T., Chaudhary, K., Shanmugasundaram, K., Kumar, S., Kumar, A., Gupta, M. K., Pal, Y., Barua, S., & Tripathi, B. N. (2021). Isolation and characterization of lumpy skin disease virus from cattle in India. PLoS One, 16(1), e0241022. doi: 10.1371/journal.pone.0241022

Lu, G., Xie, J., Luo, J., Shao, R., Jia, Kun, J., & Li, S. (2021). Lumpy skin disease outbreaks in China, since 3 August 2019. Transboundary and Emerging Diseases, 68(2), 216-219. doi: 10.1111/tbed.13898

Ma, J., Yuan, Y., Shao, J., Sun, M., He, W., Chen, J., & Liu, Q. (2022). Genomic characterization of lumpy skin disease virus in southern China. Transboundary and Emerging Diseases, 69(5), 2788-2799.

doi: 10.1111/tbed.14432

Mwanandota, J. J., Macharia, M., Ngeleja, C. M., Sallu, R. S., Yongolo, M. G., Mayenga, C., & Holton, T. A. (2018). Validation of a diagnostic tool for the diagnosis of lumpy skin disease. Veterinary Dermatology, 29(6), 532-e178. doi: 10.1111/vde.12690

Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research. 28(12), e63-e63.

doi: 10.1093/nar/28.12.e63

Ochwo, S., VanderWaal, K., Ndekezi, C., Nkamwesiga, J., Munsey, A., Witto, S. G., Nantima, N., Mayanja, F., Okurut, A. R. A., Atuhaire, D. K., & Mwiine, F. N. (2020). Molecular detection and phylogenetic analysis of lumpy skin disease virus from outbreaks in Uganda 2017–2018. BMC Veterinary Research, 16(1), 1-10. doi: 10.1186/s12917-020-02288-5

Sprygin, A., Artyuchova, E., Babin, Y., Prutnikov, P., Kostrova, E., Byadovskaya, O., & Kononov, A. (2018). Epidemiological characterization of lumpy skin disease outbreaks in Russia in 2016. Transboundary and Emerging Diseases, 65(6), 1514-1521. doi: 10.1111/tbed.12889

Su, H. L., Jia, H. J., Yin, C., Jing, Z. Z., Luo, X. N., & Chen, Y. Y. (2015). Phylogenetic analysis of Gansu sheep pox virus isolates based on P32, GPCR, and RPO30 genes. Genetics and Molecular Research, 14(1), 1887-1898. doi: 10.4238/2015.March.13.17

Sudhakar, S. B., Mishra, N., Kalaiyarasu, S., Jhade, S. K., Hemadri, D., Sood, R., Bal, G. C., Nayak, M. K., Pradhan, S. K., & Singh, V. P. (2020). Lumpy skin disease (LSD) outbreaks in cattle in Odisha state, India in August 2019: epidemiological features and molecular studies. Transboundary and Emerging Diseases, 67(6), 2408-2422. doi: 10.1111/tbed.13579

Tomita, N., Mori, Y., Kanda, H., & Notomi, T. (2008). Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols, 3(5), 877-882.

doi: 10.1038/nprot.2008.57

Tran, H. T. T., Truong, A. D., Dang, A. K., Ly, D. V., Nguyen, C. T., Chu, N. T., Van Hoang, T., Nguyen, H. T., Nguyen, V. T., & Dang, H. V. (2021). Lumpy skin disease outbreaks in Vietnam, 2020. Transboundary and Emerging Diseases, 68(3), 977-980. doi: 10.1111/tbed.14022