การจัดลำดับความเสี่ยงของการก่อสร้างอุโมงค์ใต้ดินด้วยเครื่องเจาะอุโมงค์โดยใช้ วิธีการตัดสินใจแบบหลายหลักเกณฑ์แบบผสมผสาน

Main Article Content

นิธิเดช คูหาทองสัมฤทธิ์
วาสนา จันทร์ขำ
สุชาติ หัตถ์สุวรรณ

บทคัดย่อ

การศึกษานี้นำเสนอวิธีการตัดสินใจแบบหลายหลักเกณฑ์แบบผสมสานในการจัดลำดับความสำคัญความเสี่ยงของการก่อสร้างอุโมงค์ใต้ดินด้วยเครื่องเจาะอุโมงค์ วิธีการที่เสนอประกอบไปด้วยกระบวนการลำดับชั้นเชิงวิเคราะห์ (Analytic Hierarchy Process: AHP) และวิธีการตัดสินใจแบบเรียงลำดับความสำคัญเทียบเคียงอุดมคติ (Technique for Order of Preference by Similarity to Ideal Solution: TOPSIS) โดย AHP ถูกนำมาใช้ในการกำหนดน้ำหนักความสำคัญของเกณฑ์การตัดสินใจโดยการเปรียบเทียบเกณฑ์การตัดสินใจและความเสี่ยงเป็นรายคู่ ในขณะที่ TOPSIS ถูกนำมาใช้เพื่อจัดลำดับความเสี่ยงของการก่อสร้างอุโมงค์ด้วยเครื่องเจาะอุโมงค์ โดยลำดับความเสี่ยงพิจารณาด้วยการเรียงลำดับค่าสัมประสิทธิ์เข้าใกล้แนวคิดอุดมคติจากค่ามากไปหาน้อย สุดท้ายประยุกต์วิธีการที่เสนอในการจัดลำดับความเสี่ยงของการก่อสร้างอุโมงค์ใต้ดินด้วยเครื่องเจาะอุโมงค์ในโครงการรถไฟฟ้าสายสีส้มส่วนตะวันออก ผลการวิจัยแสดงให้เห็นว่าวิธีการที่เสนอสามารถเรียงลำดับความเสี่ยงได้อย่างมีเหตุผลจากค่าสัมประสิทธิ์เข้าใกล้แนวคิดอุดมคติซึ่งคำนวณได้จากน้ำหนักความสำคัญขององค์ประกอบในการตัดสินใจทั้งหมด ประโยชน์จากการศึกษานี้เป็นแนวทางวางแผนป้องกันเหตุการณ์อันไม่พึงประสงค์ของการก่อสร้างอุโมงค์ใต้ดินด้วยเครื่องเจาะอุโมงค์โดยพิจารณาความเสี่ยงที่มีความสำคัญสูงสุดก่อน

Downloads

Download data is not yet available.

Article Details

บท
บทความวิจัย

References

Admiraal, H. and Cornaro, A. 2016. Why underground space should be included in urban planning policy - And how this will enhance an urban underground future. Tunnelling and Underground Space Technology. 55(2): 214-220.

Chen, Y. and et al. 2019. The impact on neighbourhood residential property valuations of a newly proposed public transport project: the Sydney Northwest Metro case study. Transportation Research Interdisciplinary Perspectives. 3: 100070.

Zhang, Q., Liu, Z. and Tan, J. 2019. Prediction of geological conditions for a tunnel boring machine using big operational data. Automation in Construction. 100: 73-83.

Huo, J. and et al. 2017. Application of a small-timescale fatigue, crack-growth model to the plane stress/strain transition in predicting the lifetime of a tunnel-boring-machine cutter head. Engineering Failure Analysis. 71: 11-30.

Liu, W. and et al. 2018. Safety risk factors of metro tunnel construction in China: An integrated study with EFA and SEM. Safety Science. 105: 98-113.

Moradi, M.R. and Farsangi, M.A.E. 2014. Application of the risk matrix method for geotechnical risk analysis and prediction of the advance rate in rock TBM tunneling. Rock Mechanics and Rock Engineering. 47(5): 1951-1960.

Yazdani-Chamzini, A. 2014. Proposing a new methodology based on fuzzy logic for tunnelling risk assessment. Journal of Civil Engineering and Management. 20(1): 82-94.

Hyun, K.C. and et al. 2015. Risk analysis using fault-tree analysis (FTA) and analytic hierarchy process (AHP) applicable to shield TBM tunnels. Tunnelling and Underground Space Technology. 49: 121-129.

Chung, H. and et al. 2019. Bayesian networks-based shield TBM risk management system: methodology development and application. KSCE Journal of Civil Engineering. 23(1): 452-465.

Liu, W., Zhai, S. and Liu, W. 2019. Predictive analysis of settlement risk in tunnel construction: a bow-tie-Bayesian network approach. Advances in Civil Engineering. 2019: 2045125.

Chung, H. and et al. 2021. A causal network-based risk matrix model applicable to shield TBM tunneling projects. Sustainability. 13(9): 4846.

Sharafat, A., Latif, K. and Seo, J. 2021. Risk analysis of TBM tunneling projects based on generic bow-tie risk analysis approach in difficult ground conditions. Tunnelling and Underground Space Technology. 111: 103860.

Singh, M. and et al. 2020. MCDM approach for selection of raw material in pulp and papermaking industry. Materials and Manufacturing Processes. 35(3): 241-249.

Nezarat, H., Sereshki, F. and Ataei, M. 2015. Ranking of geological risks in mechanized tunneling by using fuzzy analytical hierarchy process (FAHP). Tunnelling and Underground Space Technology. 50: 358-364.

Yazdani-Chamzini, A., Yakhchali, S.H. and Mahmoodian, M. 2013. Risk ranking of tunnel construction projects by using the ELECTRE technique under a fuzzy environment. International Journal of Management Science and Engineering Management. 8(1): 1-14.

Yazdani-Chamzini, A. and Yakhchali, S.H. 2012. Tunnel boring machine (TBM) selection using fuzzy multicriteria decision making methods. Tunnelling and Underground Space Technology. 30: 194-204.

Lin, L., Xia, Y. and Wu, D. 2020. A hybrid fuzzy multiple criteria decision-making approach for comprehensive performance evaluation of tunnel boring machine disc cutter. Computers & Industrial Engineering. 149: 106793.

Kengpol, A. and Tuammee, S. 2016. The development of a decision support framework for a quantitative risk assessment in multimodal green logistics: An empirical study. International Journal of Production Research. 54(4): 1020-1038.

Lo, H.W. and et al. 2020. A hybrid MCDM-based FMEA model for identification of critical failure modes in manufacturing. Soft Computing. 24(20): 15733-15745.

Bakioglu, G. and Atahan, A.O. 2021. AHP integrated TOPSIS and VIKOR methods with Pythagorean fuzzy sets to prioritize risks in self-driving vehicles. Applied Soft Computing. 99: 106948.

Zhang, H.J., Zhou, Y. and Gan, Q.H. 2019. An extended PROMETHEE-II-based risk prioritization method for equipment failures in the geothermal power plant. International Journal of Fuzzy Systems. 21(8): 2490-2509.

Ghorui, N. and et al. 2021. Identification of dominant risk factor involved in spread of COVID-19 using hesitant fuzzy MCDM methodology. Results in Physics. 21: 103811.

Koohathongsumrit, N. and Meethom, W. 2021. Route selection in multimodal transportation networks: a hybrid multiple criteria decision-making approach. Journal of Industrial and Production Engineering. 38(3): 171-185.

Khorramshahgol, R. and Al-Husain, R. 2021. A GP-AHP approach to design responsive supply chains for pareto customers. Operations Research Perspectives. 8: 100172.

Abdel-Basset, M. and et al. 2020. An integrated plithogenic MCDM approach for financial performance evaluation of manufacturing industries. Risk Management. 22(3): 192-218.

Kengpol, A., Rontlaong, P. and Tuominen, M. 2013. A decision support system for selection of solar power plant locations by applying fuzzy AHP and TOPSIS: An empirical study. Journal of Software Engineering and Applications. 6(9): 470-481.

Wang, L. and et al. 2020. ISA evaluation framework for security of internet of health things system using AHP-TOPSIS methods. IEEE Access. 8: 152316-152332.

Karahalios, H. 2017. The application of the AHP-TOPSIS for evaluating ballast water treatment systems by ship operators. Transportation Research Part D: Transport and Environment. 52: 172-184.

Sharma, M. and Joshi, S. 2019. Brand sustainability among young consumers: an AHP-TOPSIS approach. Young Consumers. 20(4): 314-337.

Noshad, M., Savari, M. and Roueita, G. 2018. A hybrid AHP-TOPSIS method for prospectively modeling of ultrasound‐assisted osmotic dehydration of strawberry. Journal of Food Process Engineering. 41(8): e12928.

Deng, M. 2018. Challenges and thoughts on risk management and control for the group construction of a super-long tunnel by TBM. Engineering. 4(1): 112-122.

Qiu, W. and et al. 2020. Establishing a sustainable evaluation indicator system for railway tunnel in China. Journal of Cleaner Production. 268: 122150.

Noori, A.M. and et al. 2020. Feasibility of intelligent models for prediction of utilization factor of TBM. Geotechnical and Geological Engineering. 38(3): 3125-3143.

Saaty, T.L. 1990. How to make a decision: the analytic hierarchy process. European Journal of Operational Research. 48(1): 9-26.

Koohathongsumrit, N. and Meethom, W. 2021. An integrated approach of fuzzy risk assessment model and data envelopment analysis for route selection in multimodal transportation networks. Expert Systems with Applications. 171: 114342.

Wang, Z. and et al. 2020. Failure mode and effects analysis using extended matter-element model and AHP. Computers & Industrial Engineering. 140: 106233.

Balogun, A.L. and et al. 2017. Fuzzy MCDM-based GIS model for subsea oil pipeline route optimization: An integrated approach. Marine Georesources & Geotechnology. 35(7): 961-969.

Chen, T., Lin, Y.C. and Chiu, M.C. 2019. Approximating alpha-cut operations approach for effective and efficient fuzzy analytic hierarchy process analysis. Applied Soft Computing. 85: 105855.

Koohathongsumrit, N. 2019. Application of fuzzy logic system based risk assessment to select an optimal multimodal transportation route. KMUTT Research and Development Journal. 42(4): 353-374. (in Thai)

Hwang, C. and Yoon, K. 1981. Multiple Attribute Decision Making Methods and Applications: A State-of-the-Art Survey. Berlin: Springer.

Chen, P. 2021. Effects of the entropy weight on TOPSIS. Expert Systems with Applications. 168: 114186.

dos Santos, B.M., Godoy, L.P. and Campos, L.M.S. 2019. Performance evaluation of green suppliers using entropy-TOPSIS-F. Journal of Cleaner Production. 207: 498-509.

Dehdasht, G. and et al. 2020. A hybrid approach using entropy and TOPSIS to select key drivers for a successful and sustainable lean construction implementation. PLoS One. 15(2): e0228746.

Tarei, P.K., Thakkar, J.J. and Nag, B. 2018. A hybrid approach for quantifying supply chain risk and prioritizing the risk drivers. Journal of Manufacturing Technology Management. 29(3): 533-569.

Oz, N.E. and et al. 2018. Risk assessment for clearing and grading process of a natural gas pipeline project: an extended TOPSIS model with Pythagorean fuzzy sets for prioritizing hazards. Human and Ecological Risk Assessment: An International Journal. 25(6): 1615-1632.

Koohathongsumrit, N. and Meethom, W. 2019. Identifying the key physical characteristics factors of freight transportation routing. Suranaree Journal of Science and Technology. 26(4): 454-463.