Reducing cost of glucoamylase in the ethanol production process from cassava by Saccharomyces cerevisiae MGT1/1

Main Article Content

Phetrada Thongngen
นันทนา บำรุงเชื้อ
Punnathorn Thaveethaptaikul
Rachain Visutthipat
Thanaphol Thanagornyothin
Pongsathon Phapagrangkul
Joo Shun Tan
สุกัญญา พึ่งจะแย้ม

Abstract

The objective of this study is cost reduction by reducing glucoamylase enzyme for ethanol production by uses Saccharomyces cerevisiae MGT1/1 from Thailand was isolated based on growth ability at higher 35°C on YM agar, ability to growth on YM agar composed of higher than 15% ethanol and 30% glucose (w/v). Ethanol production from 30% (w/v) of cassava by this strain using simultaneous saccharification and fermentation (SSF). The result showed that SSF gave ethanol production 116.39 g/L (14.75% v/v). This strain has potential produced ethanol when using enzyme is reduced to25% in SSF process, the result showed that it produces highest ethanol concentration to 120.54 g/L (15.20% v/v) for 72 h. and can reducing cost at least 1.18 bath per ethanol 1 liter. Therefore, Saccharomyces cerevisiae MGT1/1 is one of the potential strain to be used for ethanol production from cassava and application for costs-reduction in the future.

Article Details

Section
Research paper

References

[1] Doble, M. and Anil Kumar Kruthiventi. 2007. Industrial Examples. Green Chemistry and Engineering. 245-296.
[2] Blieck, L. and et al. 2007. Isolation and characterization of brewer's yeast variants with improved fermentation performance under high-gravity conditions. Applied and environmental microbiology. 73(3), 815–824.
[3] Nguyen, Gheewala and Garivait. (2007). Full Chain Energy Analysis of Fuel Ethanol from Cassava in Thailand. Environmental science and technology. 41, 4135-4142.
[4] Howeler and Reinhardt H. 2008. Cassava in Asia: Designing crop research for competitive markets. In Cassava’s potential in Asia in the 21st Century. Present Situation and Future Research and Development Needs; Proceedings of the 6th Regional Workshop, Ho Chi Minh City, Vietnam, February. 21-25.
[5] Gheewala, N. 2008. Life cycle assessment of fuel ethanol from cassava in Thailand. The International Journal of Life Cycle Assessment. 13.2 (2008), 147-154.
[6] กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน กระทรวงพลังงาน. โรงงานผลิตเอทานอลเพื่อใช้เป็นเชื้อเพลิงและกำลังการผลิตติดตั้ง. 2020.
https://www.dede.go.th/more_news.php?cid=82&filename=index. (in Thai). Accessed 15 October 2020.
[7] สมาคมการค้าผู้ผลิตเอทานอลไทย. ราคาเอทานอล. 2020.
http://www.thai-ethanol.com/th/statistical-data/price.html. (in Thai) Accessed 21 October 2020.
[8] Auesukaree, C. and et al. 2012. Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits. Journal of Bioscience and Bioengineering. 114(2), 144-9.
[9] Gronchi, N. and et al. 2019. Novel Yeast Strains for the Efficient Saccharification and Fermentation of Starchy By-Products to Bioethanol. Energies. 12, 714.
[10] กรมพัฒนาพลังงานทดแทนและอนุรักษ์พลังงาน กระทรวงพลังงาน. คู่มือการพัฒนาและลงทุนผลิตพลังงานทดแทน ชุดที่ 7 เชื้อเพลิงเอทานอล. 2011. https://www.dede.go.th/article_attach/h_ethanal.pdf. (in Thai). Accessed 20 October 2020.
[11] Janse, B. J. H. and Pretorius, I. S. 1995. One-step enzymatic hydrolysis of starch using a recombinant strain of Saccharomyces cerevisiae producing α-amylase, glucoamylase and pullulanase. Applied Microbiology and Biotechnology. 42, 878–883.
[12] Pugh, T. A. and Clancy M. J. 1990. Differential regulation of STA genes of Saccharomyces cerevisiae.
Molecular Genetics and Genomics. Jun;222(1). 87-96.
[13] Dranginis A. M. (1989). Regulation of STA1 gene expression by MAT during the life cycle of Saccharomyces cerevisiae. Molecular and Cellular Biology. 9(9), 3992–3998.
[14] สมาคมการค้าผู้ผลิตเอทานอลไทย. กระบวนการผลิตเอทานอล. 2013. http://www.thai-ethanol.com/th/2013-04-06-13-53-49/production-process-ethanol.html. (in Thai) Accessed 26 October 2020.