Reed dye removal using the Fenton oxidation process coupled with an ultrasonicassisted method

Main Article Content

Rawinipa Srimoon
Somyod Santimalai

Abstract

     The objective of this research was to study the reed dye removal using Fenton oxidation process coupled with ultrasonic method. The results showed that percentage of dye removal was increased by increasing H2O2 and Fe2+ concentration. However, the higher amount of H2O2 and Fe2+ decreased the efficiency of dye removal due to the scavenging of OH radicals by the excess H2O2 and Fe2+. When the initial dye concentration increased and the of H2O2 and Fe2+ remained constant, the removal efficiency decreased because of the insufficient OH radical for the degradation of dye molecules. The maximum removal was 86.69±1.41% at 30 minutes and the concentration of H2O2 and Fe2+ were 10 mL/L and 1.0 g/L, respectively. The presence of ultrasonic during the Fenton oxidation reaction pronounced the efficiency of dye removal, on account of the abundance of H, HO2 and OH radicals from the degradation of water  molecules. However, the increasing of ultrasonic frequency raised the system temperature, leading the degradation of H2O2 to water and oxygen. The results revealed that the use of four-point ultrasonic transducer with 80 KHz frequency, 90 W power, and 12-15 V electricity voltage decreased the color by 92.28±0.90%. The COD reduction was 52.51±0.69% and the remaining Fe2+ was 0.315±4.23 g/L.

Article Details

Section
Original Articles

References

กระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม. (2559). มาตรฐานควบคุมการระบายน้ำทิ้งจากโรงงานอุตสาหกรรม นิคมอุตสาหกรรม และเขตประกอบการอุตสาหกรรม. ราชกิจจานุเบกษา, เล่มที่ 133 ตอนพิเศษ 129ง, 17–21.

Asghar, A., Ramzan, N., Jamal, B. U., Maqsood, M., Sajjadi, B., & Chen, W. Y. (2019). Low frequency ultrasonic-assisted Fenton oxidation of textile wastewater: Process optimization and electrical energy evaluation. Water and Environment Journal, 1-13. https://doi.org/10.1111/wej.12482

Barbusiński, K. (2015). The modified Fenton process for decolorization of dye wastewater. Polish Journal of Environmental Studies, 14(3), 281-285.

Chaiyaraksa, C., & Pongruk, S. (2017). Treatment of pulp process wastewater using photo-Fenton and sono-Fenton. Journal of Science and Technology, 25(3), 401-411.

Hashemian, S., Tabatabaee, M., & Gafari, M. (2013). Fenton oxidation of methyl violet in aqueous solution. Journal of Chemistry, 509097, 1-6. https://doi.org/10.1155/2013/509097

Hsueh, C. L., Huang, Y. H., Wang, C. C., & Chen, C. Y. (2005). Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere, 58(10), 1409-1414. https://doi.org/10.1016/j.chemosphere.2004.09.091

Kavian, N., Asadollahfardi, G., Hasanbeigi, A., Delnavaz, M., & Samadi, A. (2024). Degradation of phenol in wastewater through an integrated dielectric barrier discharge and Fenton/photo-Fenton process. Ecotoxicology and Environmental Safety, 271, 115937. https://doi.org/10.1016/j.ecoenv.2024.115937

Lade, H. S., Waghmode, T. R., Kadam, A. A., & Govindwar, S. P. (2012). Enhanced biodegradation and detoxification of disperse azo dye rubine GFL and textile industry effluent by defined fungal-bacterial consortium. International Biodeterioration and Biodegradation, 72, 94-107. https://doi.org/10.1016/j.ibiod.2012.06.001

Li, B., Dong, Y. C., Zou, C., & Xu, Y. M. (2014). Iron (III)-alginate fiber complex as a highly effective and stable heterogeneous Fenton photocatalyst for mineralization of organic dye. Industrial & Engineering Chemistry Research, 53, 4199-4206. https://doi.org/10.1021/ie404241r

Li, Y. S., Tai, J. L., & Hua, C. (2009). Degradation of C.I. Acid Red 88 aqueous solution by combination of Fenton’s reagent and ultrasound irradiation. Journal of Chemical Technology & Biotechnology, 84, 578-583. https://doi.org/10.1002/jctb.20

Neppolian, B., Park, J. S., & Choi, H. C. (2004). Effect of Fenton-like oxidation on enhanced oxidative degradation of para-chlorobenzoic acid by ultrasonic irradiation. Ultrasonics Sonochemistry, 11(5), 273-279. https://doi.org/10.1016/j.ultsonch.2003.11.001

Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98, 33-50. https://doi.org/10.1016/S0304-3894(02)00282-0

Patil, A. D., & Raut, P. D. (2014). Treatment of textile wastewater by Fenton’s process as an advanced oxidation process. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(10), 29-32. https://doi.org/10.9790/2402-081032932

Punzi, M., Anbalagan, A., Borner, R. A., Svensson, B. M., Jonstrup, M., & Mattiasson, B. (2015). Degradation of a textile azo dye using biological treatment followed by photo-Fenton oxidation: Evaluation of toxicity and microbial community structure. Chemical Engineering Journal, 270, 290-299. http://dx.doi.org/10.1016/j.cej.2015.02.042

Qin-He, D., Wang, L. F., Jiang, H., & Yu, H. Q. (2015). A Fenton-like process for the enhanced activated sludge dewatering. Chemical Engineering Journal, 272, 128-134. https://doi.org/10.1016/j.cej.2015.03.034

Slama, H., Masmoudi, G., Fizer, M., Mariychuk, R., & Dhaouadi, H. (2024). Comprehensive study of Fenton reaction efficiency on textile wastewater treatment from dye solution to real effluent with emphasis on Fukui function analysis. Journal of Molecular Liquids, 402,

https://doi.org/10.1016/j.molliq.2024.124773

Suhan, M. B. K., Mahtab, S. M. T., Aziz, W., Akter, S., & Islam, M. S. (2021). Sudan black B dye degradation in aqueous solution by Fenton oxidation process: Kinetics and cost analysis. Case Studies in Chemical and Environmental Engineering, 4(3), 100126. https://

doi.org/10.1016/j.cscee.2021.100126

Sun, J. H., Sun, S. P., Sun, J. Y., Sun, R. X., Qiao, L. P., Guo, H. Q., & Fan, M. H. (2007). Degradation of azo dye acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation. Ultrasonics Sonochemistry, 14, 761-766. https://doi.

org/10.1016/j.ultsonch.2006.12.010

Tavares, M. G. R., Santos, D. H. S., Tavares, M. G., Duarte, J. L. S., Meili, L., Pimentel, W. R. O., Tonholo, J., & Zanta, C. L. P. S. (2020). Removal of reactive dyes from aqueous solution by Fenton reaction: Kinetic study and phytotoxicity tests. Water, Air, & Soil Pollution,

, 82. https://doi.org/10.1007/s11270-020-4465-6

Wang, W. M., Li, X. Z., Du, X., & Fu, Q. Y. (2022). A feasible approach for azo dye degradation using natural magnetite in heterogeneous Fenton oxidation. Water Cycle, 3, 100-105. https://doi.org/10.1016/j.watcyc.2022.06.002