Biological activity of silk sericin protein and its application

Main Article Content

Suchawalee Chooluck
Rattaporn Laoharenu
Sunthorn Chooluck

Abstract

Silk sericin protein or Silk glue protein, a natural protein biopolymer produced by silkworms, has attracted significant attention particularly in biomedical and cosmeceutical applications over the past decade. Sericin possesses exceptional biocompatibility, biodegradability, and unique amino acid composition endowing it with a range of beneficial properties, making it a promising candidate for various biomedical and cosmeceutical applications. This comprehensive review looks insight into the multifaceted aspects of silk sericin, encompassing its structure, compositions as well as exploring various extraction methods. Biological properties including antioxidant activity and stimulating cell proliferation, therapeutic potential, and applications in tissue engineering and drug delivery were also discussed. Research attempts focused on improving the properties and applications of sericin-based biomaterials were also mentioned.

Article Details

Section
Original Articles

References

Aghaz, F., Khazaei, M., Vaisi-Raygani, A., & Bakhtiyari, M. (2020). Cryoprotective effect of sericin supplementation in freezing and thawing media on the outcome of cryopreservation in human sperm. The Aging Male, 23(5), 469-476. https://doi.org/10.1080/

2018.1529156

Ahsan, F., Ansari, T. M., Usmani, S., & Bagga, P. (2018). An insight on silk protein sericin: From processing to biomedical application. Drug Res (Stuttg), 68(6), 317-327. https://doi.org/10.1055/s-0043-121464

Aramwit, P., Damrongsakkul, S., Kanokpanont, S., & Srichana, T. (2010). Properties and antityrosinase activity of sericin from various extraction methods. Biotechnol Appl Biochem, 55(2), 91-98. https://doi.org/10.1042/ba20090186

Aramwit, P., Kanokpanont, S., Nakpheng, T., & Srichana, T. (2010). The effect of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci, 11(5), 2200-2211. https://www.mdpi.com/1422-0067/11/5/2200

Aramwit, P., Keongamaroon, O., Siritientong, T., Bang, N., & Supasyndh, O. (2012). Sericin cream reduces pruritus in hemodialysis patients: a randomized, double-blind, placebo-controlled experimental study. BMC Nephrol, 13, 119. https://doi.org/10.1186/1471-

-13-119

Babu, K. M. (2012). Silk production and the future of natural silk manufacture. In (Vol. 2, pp. 3-29). https://doi.org/10.1533/9780857095510.1.3

Baptista-Silva, S., Bernardes, B. G., Borges, S., Rodrigues, I., Fernandes, R., Gomes-Guerreiro, S., . . .Oliveira, A. L. (2022). Exploring silk sericin for diabetic wounds: An in situ-forming hydrogel to protect against oxidative stress and improve tissue healing

and regeneration. Biomolecules, 12(6). https://doi. org/10.3390/biom12060801

Barajas Gamboa, J., Guerra, A., Restrepo Osorio, A., & Álvarez, C. (2016). Sericin applications: A globular silk protein. 18, 193-206.

Bedge, P., & Dixit- Potadar, S. (2022). A Review on The Silk Protein Sericin in Silkworms (Bombyx mori).

Cao, T.-T., & Zhang, Y.-Q. (2017). The potential of silk sericin protein as a serum substitute or an additive in cell culture and cryopreservation. Amino Acids, 49(6), 1029-1039. https://doi.org/10.1007/s00726-017-2396-3

Cao, T. T., & Zhang, Y. Q. (2016). Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater Sci Eng C Mater Biol Appl, 61, 940-952. https://doi.org/10.1016/j.msec.2015.12.082

Chlapanidas, T., Faragò, S., Lucconi, G., Perteghella, S., Galuzzi, M., Mantelli, M., . . . Faustini, M. (2013). Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities. Int J Biol Macromol, 58, 47-56. https://doi.org/10.1016/j.ijbiomac.2013.03.054

Choudhury, M., & Devi, D. (2016). Impact of high temperature and pressure on sericin scouring of muga silk cocoons. Indian J Fibre Text Res, 41, 93-96.

Costa, F., Silva, R., & Boccaccini, A. R. (2018). 7 - Fibrous protein-based biomaterials (silk, keratin, elastin, and resilin proteins) for tissue regeneration and repair. In M. A. Barbosa & M. C. L. Martins (Eds.), Peptides and Proteins as Biomaterials for Tissue Regeneration

and Repair (pp. 175-204). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-100803-4.00007-3

Dash, R., Mandal, M., Ghosh, S. K., & Kundu, S. C. (2008). Silk sericin protein of tropical tasar silkworm inhibits UVB-induced apoptosis in human skin keratinocytes. Mol Cell Biochem, 311(1-2), 111-119. https://doi.org/10.1007/s11010-008-9702-z

Devi, R., Deori, M., & Devi, D. (2011). Evaluation of antioxidant activities of silk protein sericin secreted by silkworm Antheraea assamensis (Lepidoptera: Saturniidae). J. Pharm. Res., 4, 4688-4691.

Fan, J. B., Wu, L. P., Chen, L. S., Mao, X. Y., & Ren, F.-Z. (2009). Antioxidant activities of silk sericin from silkworm Bombyx Mori. J Food Biochem, 33, 74-88. https://doi.org/10.1111/j.1745-4514.2008.00204.x

Freddi, G., Mossotti, R., & Innocenti, R. (2003). Degumming of silk fabric with several proteases. J Biotechnol, 106(1), 101-112. https://doi.org/https://doi.org/10.1016/j.jbiotec.2003.09.006

Gulrajani, M., Agarwal, R., & Chand, S. (2000). Degumming of silk with a fungal protease. Indian J Fibre Text Res, 25, 138-142.

Gulrajani, M., Agarwal, R., Grover, A., & Suri, M. (2000). Degumming of silk with lipase and protease. Indian J Fibre Text Res, 25, 69-74.

Jena, K., Pandey, J. P., Kumari, R., Sinha, A. K., Gupta, V. P., & Singh, G. P. (2018). Free radical scavenging potential of sericin obtained from various ecoraces of tasar cocoons and its cosmeceuticals implication. Int J Biol Macromol, 120(Pt A), 255-262. https://doi.

org/10.1016/j.ijbiomac.2018.08.090

Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N., & Nomura, M. (1998). Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem, 62(1), 145-147. https://doi.org/10.1271/bbb.62.145

Kaur, J., Rajkhowa, R., Tsuzuki, T., Millington, K., Zhang, J., & Wang, X. (2013). Photoprotection by silk cocoons. Biomacromolecules, 14(10), 3660-3667. https://doi.org/10.1021/bm401023h

Keawkorn, W., Limpeanchob, N., Tiyaboonchai, W., Pongcharoen, S., & Sutheerawattananonda, M. (2013). The effect of dietary sericin on rats. ScienceAsia, 39, 252. https://doi.org/10.2306/scienceasia1513-1874.2013.39.252

Khan, M. R., Tsukada, M., Gotoh, Y., Morikawa, H., Freddi, G., & Shiozaki, H. (2010). Physical properties and dyeability of silk fibers degummed with citric acid. Bioresour Technol, 101(21), 8439-8445. https://doi.org/10.1016/j.biortech.2010.05.100

Kim, J., Kwon, M., & Kim, S. (2016). Biological Degumming of Silk Fabrics with Proteolytic Enzymes. J Nat Fibers, 13(6), 629-639. https://doi.org/10.1080/15440478.2015.1093578

Kim, J. Y., Kim, S. G., & Garagiola, U. (2023). Relevant Properties and Potential Applications of Sericin in Bone Regeneration. Curr Issues Mol Biol, 45(8), 6728-6742. https://doi.org/10.3390/cimb45080426

Kumar, J. P., & Mandal, B. B. (2017). Antioxidant potential of mulberry and non-mulberry silk sericin and its implications in biomedicine. Free Radic Biol Med, 108, 803-818. https://doi.org/https://doi.org/10.1016/j.freeradbiomed.2017.05.002

Kunz, R. I., Brancalhão, R. M. C., Ribeiro, L. d. F. C., & Natali, M. R. M. (2016). Silkworm Sericin: Properties and Biomedical Applications. Biomed Res Int, 2016, 8175701. https://doi.org/10.1155/2016/81 75701

Kurioka, A., & Yamazaki, M. (2002). Purification and identification of flavonoids from the yellow green cocoon shell (Sasamayu) of the silkworm, Bombyx mori. Biosci Biotechnol Biochem, 66(6), 1396-1399. https://doi.org/10.1271/bbb.66.1396

Lee, K. (2004). Silk Sericin Retards the Crystallization of Silk Fibroin. Macromol Rapid Commun, 25, 1792-1796. https://doi.org/10.1002/marc.200400333

Li, Y., Wei, Y., Zhang, G., & Zhang, Y. (2023). Sericin from fibroin-deficient silkworms served as a promising resource for biomedicine. Polymers (Basel), 15(13). https://doi.org/10.3390/polym15132941

Li, Y. G., Ji, D. F., Lin, T. B., Zhong, S., Hu, G. Y., & Chen, S. (2008). Protective effect of sericin peptide against alcohol-induced gastric injury in mice. Chin Med J (Engl), 121(20), 2083-2087.

Liu, J., Shi, L., Deng, Y., Zou, M., Cai, B., Song, Y., . . . Wang, L. (2022). Silk sericin-based materials for biomedical applications. Biomaterials, 287, 121638. https://doi.org/https://doi.org/10.1016/j.biomaterials.2022.121638

Mahmoodi, N. M., Mazaheri, F., & Rahimi, S. (2010). Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. J Clean Prod, 18, 146-151. https://doi.org/10.1016/j.jclepro.2009.10.003

Minoura, N., Aiba, S., Higuchi, M., Gotoh, Y., Tsukada, M., & Imai, Y. (1995). Attachment and growth of fibroblast cells on silk fibroin. Biochem Biophys Res Commun, 208(2), 511-516. https://doi.org/10.1006/bbrc.1995.1368

Mondal, M. S. (2007). The silk proteins , sericin and fibroin in silkworm , Bombyx mori. More, S. V., Khandelwal, H. B., Joseph, M. A., & Laxman, R. S. (2013). Enzymatic Degumming of Silk with Microbial Proteases. J Nat Fibers, 10(2), 98-111. https://doi.org/10.1080/15440478.2012.761114

Nakpathom, M., Somboon, B., & Narumol, N. (2009). Papain enzymatic degumming of thai Bombyx mori silk fibers. Microsc Microanal Res, 23, 142-146.

Napavichayanun, S., Lutz, O., Fischnaller, M., Jakschitz, T., Bonn, G., & Aramwit, P. (2017). Identification and quantification and antioxidant activity of flavonoids in different strains of silk cocoon, Bombyx mori. Arch Biochem Biophys, 631, 58-65. https://doi.org/https://doi.org/10.1016/j.abb.2017.08.010

Omar, A., Gao, Y., Wubulikasimu, A., Arken, A., Aisa, H. A., & Yili, A. (2021). Effects of trypsin-induced limited hydrolysis on the structural, functional, and bioactive properties of sericin [10.1039/D1RA03772B]. RSC Advances, 11(41), 25431-25440. https://doi.

org/10.1039/D1RA03772B

Padamwar, M., & Pawar, A. (2004). Silk sericin and its applications: A review. J Sci Ind Res, 63, 323-329.

Padamwar, M. N., Pawar, A. P., Daithankar, A. V., & Mahadik, K. R. (2005). Silk sericin as a moisturizer: an in vivo study. J Cosmet Dermatol, 4(4), 250-257. https://doi.org/10.1111/j.1473-2165.2005.00200.x

Rodbumrer, P., Arthan, D., Uyen, U., Yuvaniyama, J., Svasti, J., & Wongsaengchantra, P. Y. (2012). Functional expression of a Bombyx mori cocoonase: potential application for silk degumming. Acta Biochimica et Biophysica Sinica, 44(12), 974-983. https://doi.org/https://doi.org/10.1093/abbs/gms090

Rosena, A., Koobkokkruad, T., Eaknai, W., Bunwatcharaphansakun, P., Maniratanachote, R., & Aueviriyavit, S. (2018). Protective effect of Thai silk extracts on drug-induced phototoxicity in human epidermal A431 cells and a reconstructed human epidermis model. J

Photochem Photobiol B, 188, 50-59. https://doi.org/https://doi.org/10.1016/j.jphotobiol.2018.08.022

Seo, S. J., Das, G., Shin, H. S., & Patra, J. K. (2023). Silk Sericin Protein Materials: Characteristics and Applications in Food-Sector Industries. Int J Mol Sci, 24(5). https://doi.org/10.3390/ijms24054951

Shitole, M., Dugam, S., Tade, R., & Nangare, S. (2020). Pharmaceutical applications of silk sericin. Ann Pharm Fr, 78(6), 469-486. https://doi.org/10.1016/j.pharma.2020.06.005

Silva, A., Costa, E., Reis, S., Spencer, C., Calhelha, R., Miguel, S., . . . Coutinho, P. (2022). Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers, 14, 4931. https://doi.org/10.3390/polym14224931

Takasu, Y., Yamada, H., & Tsubouchi, K. (2002). Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Biosci Biotechnol Biochem, 66(12), 2715-2718. https://doi.org/10.1271/bbb.66.2715

Terada, S., Nishimura, T., Sasaki, M., Yamada, H., & Miki, M. (2002). Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology, 40(1-3), 3-12. https://doi.org/10.1023/

a:10239 93400608

Unajak, S., Aroonluke, S., & Promboon, A. (2015). An active recombinant cocoonase from the silkworm Bombyx mori: bleaching, degumming and sericin degrading activities. J Sci Food Agric, 95(6), 1179-1189. https://doi.org/10.1002/jsfa.6806

Wang, R., Wang, Y., Song, J., Tian, C., Jing, X., Zhao, P., & Xia, Q. (2023). A novel method for silkworm cocoons self-degumming and its effect on silk fibers. J Adv Res, 53, 87-98. https://doi.org/https://doi.org/10.1016/j.jare.2022.12.005

Zhaorigetu, S., Sasaki, M., Watanabe, H., & Kato, N. (2001). Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1,2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation. Biosci Biotechnol Biochem, 65(10), 2181-2186. https://doi.org/10.1271/bbb.65.2181