ฤทธิ์ทางชีวภาพจากโปรตีนไหมเซริซินและการนำไปใช้ประโยชน์

Main Article Content

สุชาวลี ชูลักษณ์
รัฐพร เลาหเรณู
สุนทรต์ ชูลักษณ์

บทคัดย่อ

โปรตีนเซริซิน (Sericin protein) หรือโปรตีนกาวไหม (Silk glue protein) จัดเป็นพอลิเมอร์ทางชีวภาพชนิดหนึ่งที่ผลิตจากหนอนไหม มีฤทธิ์ทางชีวภาพที่เป็นประโยชน์หลากหลาย โดยในช่วงทศวรรษที่ผ่านมา กาวไหมได้รับความสนใจเป็นอย่างมากสำหรับนำไปประยุกต์ใช้ทางชีวการแพทย์ และเวชสำอางเนื่องจากคุณสมบัติทางชีวภาพที่เข้ากันได้กับร่างกายและสามารถย่อยสลายได้ตามธรรมชาติ รวมทั้งยังมีฤทธิ์ที่เป็นประโยชน์มากมายที่เกิดจากกรดแอมิโนที่เป็นองค์ประกอบในกาวไหมอีกด้วย บทความปริทัศน์นี้จะกล่าวถึงโครงสร้างและองค์ประกอบรวมถึงคุณสมบัติทางชีวภาพของกาวไหม วิธีต่างๆที่ใช้ในการลอกกาวไหมและการนำไปประยุกต์ใช้ในทางการแพทย์เช่นการรักษาโรคเฉพาะและการส่งเสริมการฟื้นฟูเนื้อเยื่อ รวมถึงฤทธิ์ในการต้านอนุมูลอิสระ ฤทธิ์ส่งเสริมการเจริญของเซลล์ และฤทธิ์ทางชีวภาพอื่นๆ บทความนี้ยังกล่าวการนำกาวไหมไปสร้างวัสดุชีวภาพและความก้าวหน้าในการนำไปใช้ในทางวิศวกรรมเนื้อเยื่อและการนำส่งยาและงานวิจัยที่จะช่วยเสริมศักยภาพของวัสดุชีวภาพจากกาวไหม

Article Details

ประเภทบทความ
บทความวิจัย

เอกสารอ้างอิง

Aghaz, F., Khazaei, M., Vaisi-Raygani, A., & Bakhtiyari, M. (2020). Cryoprotective effect of sericin supplementation in freezing and thawing media on the outcome of cryopreservation in human sperm. The Aging Male, 23(5), 469-476. https://doi.org/10.1080/

2018.1529156

Ahsan, F., Ansari, T. M., Usmani, S., & Bagga, P. (2018). An insight on silk protein sericin: From processing to biomedical application. Drug Res (Stuttg), 68(6), 317-327. https://doi.org/10.1055/s-0043-121464

Aramwit, P., Damrongsakkul, S., Kanokpanont, S., & Srichana, T. (2010). Properties and antityrosinase activity of sericin from various extraction methods. Biotechnol Appl Biochem, 55(2), 91-98. https://doi.org/10.1042/ba20090186

Aramwit, P., Kanokpanont, S., Nakpheng, T., & Srichana, T. (2010). The effect of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci, 11(5), 2200-2211. https://www.mdpi.com/1422-0067/11/5/2200

Aramwit, P., Keongamaroon, O., Siritientong, T., Bang, N., & Supasyndh, O. (2012). Sericin cream reduces pruritus in hemodialysis patients: a randomized, double-blind, placebo-controlled experimental study. BMC Nephrol, 13, 119. https://doi.org/10.1186/1471-

-13-119

Babu, K. M. (2012). Silk production and the future of natural silk manufacture. In (Vol. 2, pp. 3-29). https://doi.org/10.1533/9780857095510.1.3

Baptista-Silva, S., Bernardes, B. G., Borges, S., Rodrigues, I., Fernandes, R., Gomes-Guerreiro, S., . . .Oliveira, A. L. (2022). Exploring silk sericin for diabetic wounds: An in situ-forming hydrogel to protect against oxidative stress and improve tissue healing

and regeneration. Biomolecules, 12(6). https://doi. org/10.3390/biom12060801

Barajas Gamboa, J., Guerra, A., Restrepo Osorio, A., & Álvarez, C. (2016). Sericin applications: A globular silk protein. 18, 193-206.

Bedge, P., & Dixit- Potadar, S. (2022). A Review on The Silk Protein Sericin in Silkworms (Bombyx mori).

Cao, T.-T., & Zhang, Y.-Q. (2017). The potential of silk sericin protein as a serum substitute or an additive in cell culture and cryopreservation. Amino Acids, 49(6), 1029-1039. https://doi.org/10.1007/s00726-017-2396-3

Cao, T. T., & Zhang, Y. Q. (2016). Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater Sci Eng C Mater Biol Appl, 61, 940-952. https://doi.org/10.1016/j.msec.2015.12.082

Chlapanidas, T., Faragò, S., Lucconi, G., Perteghella, S., Galuzzi, M., Mantelli, M., . . . Faustini, M. (2013). Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities. Int J Biol Macromol, 58, 47-56. https://doi.org/10.1016/j.ijbiomac.2013.03.054

Choudhury, M., & Devi, D. (2016). Impact of high temperature and pressure on sericin scouring of muga silk cocoons. Indian J Fibre Text Res, 41, 93-96.

Costa, F., Silva, R., & Boccaccini, A. R. (2018). 7 - Fibrous protein-based biomaterials (silk, keratin, elastin, and resilin proteins) for tissue regeneration and repair. In M. A. Barbosa & M. C. L. Martins (Eds.), Peptides and Proteins as Biomaterials for Tissue Regeneration

and Repair (pp. 175-204). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-100803-4.00007-3

Dash, R., Mandal, M., Ghosh, S. K., & Kundu, S. C. (2008). Silk sericin protein of tropical tasar silkworm inhibits UVB-induced apoptosis in human skin keratinocytes. Mol Cell Biochem, 311(1-2), 111-119. https://doi.org/10.1007/s11010-008-9702-z

Devi, R., Deori, M., & Devi, D. (2011). Evaluation of antioxidant activities of silk protein sericin secreted by silkworm Antheraea assamensis (Lepidoptera: Saturniidae). J. Pharm. Res., 4, 4688-4691.

Fan, J. B., Wu, L. P., Chen, L. S., Mao, X. Y., & Ren, F.-Z. (2009). Antioxidant activities of silk sericin from silkworm Bombyx Mori. J Food Biochem, 33, 74-88. https://doi.org/10.1111/j.1745-4514.2008.00204.x

Freddi, G., Mossotti, R., & Innocenti, R. (2003). Degumming of silk fabric with several proteases. J Biotechnol, 106(1), 101-112. https://doi.org/https://doi.org/10.1016/j.jbiotec.2003.09.006

Gulrajani, M., Agarwal, R., & Chand, S. (2000). Degumming of silk with a fungal protease. Indian J Fibre Text Res, 25, 138-142.

Gulrajani, M., Agarwal, R., Grover, A., & Suri, M. (2000). Degumming of silk with lipase and protease. Indian J Fibre Text Res, 25, 69-74.

Jena, K., Pandey, J. P., Kumari, R., Sinha, A. K., Gupta, V. P., & Singh, G. P. (2018). Free radical scavenging potential of sericin obtained from various ecoraces of tasar cocoons and its cosmeceuticals implication. Int J Biol Macromol, 120(Pt A), 255-262. https://doi.

org/10.1016/j.ijbiomac.2018.08.090

Kato, N., Sato, S., Yamanaka, A., Yamada, H., Fuwa, N., & Nomura, M. (1998). Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci Biotechnol Biochem, 62(1), 145-147. https://doi.org/10.1271/bbb.62.145

Kaur, J., Rajkhowa, R., Tsuzuki, T., Millington, K., Zhang, J., & Wang, X. (2013). Photoprotection by silk cocoons. Biomacromolecules, 14(10), 3660-3667. https://doi.org/10.1021/bm401023h

Keawkorn, W., Limpeanchob, N., Tiyaboonchai, W., Pongcharoen, S., & Sutheerawattananonda, M. (2013). The effect of dietary sericin on rats. ScienceAsia, 39, 252. https://doi.org/10.2306/scienceasia1513-1874.2013.39.252

Khan, M. R., Tsukada, M., Gotoh, Y., Morikawa, H., Freddi, G., & Shiozaki, H. (2010). Physical properties and dyeability of silk fibers degummed with citric acid. Bioresour Technol, 101(21), 8439-8445. https://doi.org/10.1016/j.biortech.2010.05.100

Kim, J., Kwon, M., & Kim, S. (2016). Biological Degumming of Silk Fabrics with Proteolytic Enzymes. J Nat Fibers, 13(6), 629-639. https://doi.org/10.1080/15440478.2015.1093578

Kim, J. Y., Kim, S. G., & Garagiola, U. (2023). Relevant Properties and Potential Applications of Sericin in Bone Regeneration. Curr Issues Mol Biol, 45(8), 6728-6742. https://doi.org/10.3390/cimb45080426

Kumar, J. P., & Mandal, B. B. (2017). Antioxidant potential of mulberry and non-mulberry silk sericin and its implications in biomedicine. Free Radic Biol Med, 108, 803-818. https://doi.org/https://doi.org/10.1016/j.freeradbiomed.2017.05.002

Kunz, R. I., Brancalhão, R. M. C., Ribeiro, L. d. F. C., & Natali, M. R. M. (2016). Silkworm Sericin: Properties and Biomedical Applications. Biomed Res Int, 2016, 8175701. https://doi.org/10.1155/2016/81 75701

Kurioka, A., & Yamazaki, M. (2002). Purification and identification of flavonoids from the yellow green cocoon shell (Sasamayu) of the silkworm, Bombyx mori. Biosci Biotechnol Biochem, 66(6), 1396-1399. https://doi.org/10.1271/bbb.66.1396

Lee, K. (2004). Silk Sericin Retards the Crystallization of Silk Fibroin. Macromol Rapid Commun, 25, 1792-1796. https://doi.org/10.1002/marc.200400333

Li, Y., Wei, Y., Zhang, G., & Zhang, Y. (2023). Sericin from fibroin-deficient silkworms served as a promising resource for biomedicine. Polymers (Basel), 15(13). https://doi.org/10.3390/polym15132941

Li, Y. G., Ji, D. F., Lin, T. B., Zhong, S., Hu, G. Y., & Chen, S. (2008). Protective effect of sericin peptide against alcohol-induced gastric injury in mice. Chin Med J (Engl), 121(20), 2083-2087.

Liu, J., Shi, L., Deng, Y., Zou, M., Cai, B., Song, Y., . . . Wang, L. (2022). Silk sericin-based materials for biomedical applications. Biomaterials, 287, 121638. https://doi.org/https://doi.org/10.1016/j.biomaterials.2022.121638

Mahmoodi, N. M., Mazaheri, F., & Rahimi, S. (2010). Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. J Clean Prod, 18, 146-151. https://doi.org/10.1016/j.jclepro.2009.10.003

Minoura, N., Aiba, S., Higuchi, M., Gotoh, Y., Tsukada, M., & Imai, Y. (1995). Attachment and growth of fibroblast cells on silk fibroin. Biochem Biophys Res Commun, 208(2), 511-516. https://doi.org/10.1006/bbrc.1995.1368

Mondal, M. S. (2007). The silk proteins , sericin and fibroin in silkworm , Bombyx mori. More, S. V., Khandelwal, H. B., Joseph, M. A., & Laxman, R. S. (2013). Enzymatic Degumming of Silk with Microbial Proteases. J Nat Fibers, 10(2), 98-111. https://doi.org/10.1080/15440478.2012.761114

Nakpathom, M., Somboon, B., & Narumol, N. (2009). Papain enzymatic degumming of thai Bombyx mori silk fibers. Microsc Microanal Res, 23, 142-146.

Napavichayanun, S., Lutz, O., Fischnaller, M., Jakschitz, T., Bonn, G., & Aramwit, P. (2017). Identification and quantification and antioxidant activity of flavonoids in different strains of silk cocoon, Bombyx mori. Arch Biochem Biophys, 631, 58-65. https://doi.org/https://doi.org/10.1016/j.abb.2017.08.010

Omar, A., Gao, Y., Wubulikasimu, A., Arken, A., Aisa, H. A., & Yili, A. (2021). Effects of trypsin-induced limited hydrolysis on the structural, functional, and bioactive properties of sericin [10.1039/D1RA03772B]. RSC Advances, 11(41), 25431-25440. https://doi.

org/10.1039/D1RA03772B

Padamwar, M., & Pawar, A. (2004). Silk sericin and its applications: A review. J Sci Ind Res, 63, 323-329.

Padamwar, M. N., Pawar, A. P., Daithankar, A. V., & Mahadik, K. R. (2005). Silk sericin as a moisturizer: an in vivo study. J Cosmet Dermatol, 4(4), 250-257. https://doi.org/10.1111/j.1473-2165.2005.00200.x

Rodbumrer, P., Arthan, D., Uyen, U., Yuvaniyama, J., Svasti, J., & Wongsaengchantra, P. Y. (2012). Functional expression of a Bombyx mori cocoonase: potential application for silk degumming. Acta Biochimica et Biophysica Sinica, 44(12), 974-983. https://doi.org/https://doi.org/10.1093/abbs/gms090

Rosena, A., Koobkokkruad, T., Eaknai, W., Bunwatcharaphansakun, P., Maniratanachote, R., & Aueviriyavit, S. (2018). Protective effect of Thai silk extracts on drug-induced phototoxicity in human epidermal A431 cells and a reconstructed human epidermis model. J

Photochem Photobiol B, 188, 50-59. https://doi.org/https://doi.org/10.1016/j.jphotobiol.2018.08.022

Seo, S. J., Das, G., Shin, H. S., & Patra, J. K. (2023). Silk Sericin Protein Materials: Characteristics and Applications in Food-Sector Industries. Int J Mol Sci, 24(5). https://doi.org/10.3390/ijms24054951

Shitole, M., Dugam, S., Tade, R., & Nangare, S. (2020). Pharmaceutical applications of silk sericin. Ann Pharm Fr, 78(6), 469-486. https://doi.org/10.1016/j.pharma.2020.06.005

Silva, A., Costa, E., Reis, S., Spencer, C., Calhelha, R., Miguel, S., . . . Coutinho, P. (2022). Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers, 14, 4931. https://doi.org/10.3390/polym14224931

Takasu, Y., Yamada, H., & Tsubouchi, K. (2002). Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Biosci Biotechnol Biochem, 66(12), 2715-2718. https://doi.org/10.1271/bbb.66.2715

Terada, S., Nishimura, T., Sasaki, M., Yamada, H., & Miki, M. (2002). Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology, 40(1-3), 3-12. https://doi.org/10.1023/

a:10239 93400608

Unajak, S., Aroonluke, S., & Promboon, A. (2015). An active recombinant cocoonase from the silkworm Bombyx mori: bleaching, degumming and sericin degrading activities. J Sci Food Agric, 95(6), 1179-1189. https://doi.org/10.1002/jsfa.6806

Wang, R., Wang, Y., Song, J., Tian, C., Jing, X., Zhao, P., & Xia, Q. (2023). A novel method for silkworm cocoons self-degumming and its effect on silk fibers. J Adv Res, 53, 87-98. https://doi.org/https://doi.org/10.1016/j.jare.2022.12.005

Zhaorigetu, S., Sasaki, M., Watanabe, H., & Kato, N. (2001). Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1,2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation. Biosci Biotechnol Biochem, 65(10), 2181-2186. https://doi.org/10.1271/bbb.65.2181