An analysis of interaction design factors for online data collection applications using smartphones

Main Article Content

Sununthar Vongjaturapat

Abstract

Currently, online data collection for research in various fields may replace traditional paper-and-pencil/paper-and-pen questionnaire methods due to the demonstrated potential of online data collection. This research presents an
investigation into the design factors for interaction in online data collection applications using smartphones. The study
is based on the Task-Technology Fit (TTF) theory and principles of interaction design. The analysis of data using
Structural Equation Modeling and hypothesis testing on a sample of 320 participants from Ramkhamhaeng University
found that the following factors enhance the effectiveness of designing an online data collection application using
smartphones:1) The content of the questions in the application 2) The method of selecting options 3) The presentation of results, and 4) The adjustment of the scale. These factors contribute to the application’s ability to adequately support online surveys conducted via smartphones. Moreover, the research findings indicate that the method of selecting options in online data collection applications displayed on smartphones is the most significant factor compared to other factors within the endogenous latent variables. This indicated the importance of symbols that are easy to understand and of a size appropriate for the size of the smartphone screen.

Article Details

Section
Original Articles

References

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T

Ajzen, I. (2002). Perceivedbehavioral control, self-efficacy, locus of control, and the theory of planned behavior. Journal of Applied Social Psychology, 32(4), 665–683. https://doi.org/10.1111/j.1559-1816.2002.tb00236.x

Al-Maatouk, Q., Othman, M., Aldraiweesh, A., Alturki, U., Al-Rahmi, W., & Aljeraiwi, A. (2020).Task-technology fit and technology acceptance model application to structure and evaluate the adoption of social media in academia. IEEE Access, 8, 78207–78216. https://

doi.org/10.1109/ACCESS.2020.2990420

Anshari, M., Almunawar, M. N., Shahrill, M., Wicaksono, D., & Huda, M. (2017). Smartphones usage in the classrooms: Learning aid or interference? Education and Information Technologies, 22(6), 3063–3079. https://doi.org/10.1007/s10639-017-9572-7

Antoun, C., Couper, M., & Conrad, F. (2017). Effects of mobile versus PC web on survey response quality: A crossover experiment in a probability web panel. Public Opinion Quarterly, 81(S1), 280–306. https://doi.org/10.1093/poq/nfw088

Antoun, C., Katz, J., Argueta, J., & Wang, L. (2018). Design heuristics for effective smartphone questionnaires. Social Science Computer Review, 36(5), 557–574.https://doi.org/10.1177/0894439317727072

Barzilay, M. (2019). Data collection and mobile technologies. ResearchGate.https://doi.org/10.13140/RG.2.2.31541.93929

Bere, A. (2018). Applying an extended task-technology fit for establishing determinants of mobile learning: An instant messaging initiative. Journal of Information Systems Education, 29(4), 239–252.

Bhat, A. (2018, August 17). Online survey: What it is, advantages & examples. QuestionPro. https://www.questionpro.com/blog/what-are-online-surveys/

Brunner, M., & Süß, H.-M. (2005). Analyzing the reliability of multidimensional measures: An example from intelligence research. Educational and Psychological Measurement, 65(2), 227–240. https://doi.org/10.1177/0013164404268669

Cannell, C. F., Miller, P. V., & Oksenberg, L. (1981). Research on interviewing techniques. Sociological Methodology, 12, 389–437. https://doi.org/10.2307/270748

Chan, E. C., Sun, Y., Aitchison, K. J., & Sivapalan, S. (2019). Mobile app-based self-report questionnaires for assessment and monitoring of bipolar disorder: Systematic review (Preprint). JMIR Formative Research. https://doi.org/10.2196/13770

Chan, E. C., Sun, Y., Aitchison, K. J., & Sivapalan, S. (2021). Mobile app-based self-report questionnaires for the assessment and monitoring of bipolar disorder: Systematic review. JMIR Formative Research, 5(1), e13770. https://doi.org/10.2196/13770

Creswell, J. W., & Creswell, J. D. (2024). Research design: Qualitative, quantitative, and mixed methods approaches (6th ed.). SAGE Publications.

Dale, T., & Walsoe, H. (2020). Optimizing grid questions for smartphones: A comparison of optimized and nonoptimized designs and effects on data quality on different devices. In P. Beatty, D. Collins, L. Kaye, J. L. Padilla, G. Willis, & A. Wilmot (Eds.), Advances in questionnaire design, development, evaluation and testing (pp. 375–402). Wiley. https://doi.org/10.1002/9781119263685.ch15

Dang, Y. (Mandy), Zhang, Y. (Gavin), Brown, S. A., & Chen, H. (2020). Examining the impacts of mental workload and task-technology fit on user acceptance of the social media search system. Information Systems Frontiers, 22(3), 697–718. https://doi.org/10.1007/s10796-018-9879-y

Décieux, J. P. (2021). Is there more than the answer to the question? Device use and completion time as indicators for selectivity bias and response convenience in online surveys. In M. Erlinghagen, A. Ette, N. Schneider, & N. Witte (Eds.), The global lives of German migrants (pp. 309–324). Springer.

Décieux, J. P., & Sischka, P. E. (2024). Comparing Data Quality and Response Behavior Between Smartphone, Tablet, and Computer Devices in Responsive Design Online Surveys. Sage Open, 14(2), 21582440241252116. https://doi.org/10.1177/21582440241252116

El-Masri, M., Al-Yafi, K., & Kamal, M. M. (2023). A task-technology-identity fit model of smartwatch utilisation and user satisfaction: A hybrid SEM-neural network approach. Information Systems Frontiers, 25(2), 835–852. https://doi.org/10.1007/s10796-022-10256-7

Fischer, F., & Kleen, S. (2021). Possibilities, problems, and perspectives of data collection by mobile apps in longitudinal epidemiological studies: Scoping review. Journal of Medical Internet Research, 23(1), e17691. https://doi.org/10.2196/17691

Gefen, D., Straub, D., & Boudreau, M. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the Association for Information Systems, 4(1), Article 7. https://doi.org/10.17705/1CAIS.00407

Gomes, H., Farrington, D., Krohn, M., Cunha, A., Jurdi, J., Sousa, B., Morgado, D., Hoft, J., Hartsell, E., Kassem,L., & Maia, A. (2022).Theimpactof modes of administration on self-reports of offending: Evidence from a methodological experiment with

university students. Journal of Experimental Criminology, 20(1), 1–21. https://doi.org/10.1007/s11292-022-09531-z

Goodhue, D. L. (1995). Understanding user evaluations of information systems. Management Science, 41(12), 1827–1844. https://doi.org/10.1287/mnsc.41.12.1827

Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213–236. https://doi.org/10.2307/249689

Gummer, T. (2020). Adaptive and responsive survey designs. In P. Atkinson, S. Delamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE research methods foundations. SAGE Publications.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Pearson. Howard, M., & Rose, J. (2018). Refining and extending task–technology fit theory: Creation of two task–technology fit scales and empirical clarification of the

construct. Information & Management, 56(6), 103134. https://doi.org/10.1016/j.im.2018.12.002

Huff, K. C. (2015). The comparison of mobile devices to computers for web-based assessments. Computers in Human Behavior, 49, 208–212. https://doi.org/10.1016/j.chb.2015.02.029

Imlawi, J. I., AL-Shatnawi, A., AlFawwaz, B. M., ALShatnawi, H. M., & Al-masaeed, S. (2023). A model predicting student engagement and intention with mobile learning management systems. Interdisciplinary Journal of Information, Knowledge, and Management, 18, 149–172. https://doi.org/10.28945/5095

Kaewkitipong, L. (2023). The roles of personal innovation and task technology fit in mobile payment retention (SSRN Scholarly Paper 4416714). https://papers.ssrn.com/abstract=4416714

Kang, H.-J., Han, J., & Kwon, G. H. (2022). The acceptance behavior of smart home health care services in South Korea: An integrated model of UTAUT and TTF. International Journal of Environmental Research and Public Health, 19(20), 13279. https://doi.org/10.33

/ijerph192013279

Lamprinakos, G., Magrizos, S., Kostopoulos, I., Drossos, D., & Santos, D. (2022). Overt and covert customer data collection in online personalized advertising: The role of user emotions. Journal of Business Research, 141, 308–320. https://doi.org/10.1016/j.jbusres.202

12.028

Lefever, S., Dal, M., & Matthíasdóttir, Á. (2006). Online data collection in academic research: Advantages and limitations. British Journal of Educational Technology, 38(4), 574–582. https://doi.org/10.1111/j .1467-8535.2006.00638.x

Liu, Y., Tan, H., Cao, G., & Xu, Y. (2024). Enhancing user engagement through adaptive UI/UX design: A study on personalized mobile app interfaces. Computer Science & IT Research Journal, 5(8), 1942–1962. https://doi.org/10.51594/csitrj.v5i8.1457

Molina, A. I., Redondo, M. A., Lacave, C., & Ortega, M. (2014). Assessing the effectiveness of new devices for accessing learning materials: An empirical analysis based on eye tracking and learner subjective perception. Computers in Human Behavior, 31,

–490. https://doi.org/10.1016/j.chb.2013.04.022

Nayak, M. S. D. P., & Narayan, K. A. (2019). Strengths and weakness of online surveys. Journal of Family Medicine and Primary Care, 8(2), 352–357. https://doi.org/10.4103/jfmpc.jfmpc_319_18

Nunnally, J. C. (1967). Psychometric theory. McGraw-Hill. Nunnally, J. C. (1978). Psychometric theory (2nd ed.). McGraw-Hill.

Oliveira, T., Faria, M., Thomas, M., & Popovič, A. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International Journal of Information Management, 34(5), 689–703. https://doi.org/10.1016/j.ijinfomgt.2014.06.004

Onoka, K. (2017). Solutions to challenges in using mobile technology for data collection in research settings. International Journal of Innovative Research in Computer and Communication Engineering, 5(11).

Pathiravasan, C., Zhang, Y., Trinquart, L., Benjamin, E., Borrelli, B., Mcmanus, D., Kheterpal, V., Lin, H., Sardana, M., Hammond, M., Spartano, N., Dunn, A., Schramm, E., Nowak, C., Manders, E., Liu, H., Kornej, J., Liu, C., & Murabito, J. (2021). Adherence of mobile app-based surveys and comparison with traditional surveys: eCohort study. Journal of Medical Internet Research, 23(1), e24773. https://doi.

org/10.2196/24773

Peytchev, A., & Hill, C. (2010). Experiments in mobile web survey design. Social Science Computer Review, 28(3), 319–335. https://doi.org/10.1177/0894439309353037

Robert, J. (2022, October 3). 2022 students and technology report: Rebalancing the student experience. EDUCAUSE Library. https://library.educause.edu/resources/2022/10/2022-students-and-technologyreport-rebalancing-the-student-experience

Safarudin, M. (2023). Task technology fit adoption in the recruitment process using Google Form for IPSM members. Jurnal Teknologi Informasi Dan Pendidikan, 16(2), 156–173.

Sandesara, M., Bodkhe, U., Tanwar, S., Alshehri, M. D., Sharma, R., Neagu, B.-C., Grigoras, G., & Raboaca, M. S. (2022). Design and experience of mobile applications: A pilot survey. Mathematics, 10(14), 2380. https://doi.org/10.3390/math10142380

Setiawan, A. H. (2019). The use of skimming and scanning techniques in reading comprehension for TOEFL [Undergraduate thesis, Ar-Raniry State Islamic University].

Shitkova, M., Holler, J., Heide, T., Clever, N., & Becker, J. (2015). Towards usability guidelines for mobile websites and applications. In Wirtschaftsinformatik Proceedings 2015 (pp. 1603–1617). https://aisel.aisnet.org/wi2015/107

Straub, D., Boudreau, M., & Gefen, D. (2004). Validation guidelines for IS positivist research. Communications of the Association for Information Systems, 13, Article 24. https://doi.org/10.17705/1CAIS.01324

Sun, S., Xiong, C., & Chang, V. (2019). Acceptance of information and communication technologies in education: An investigation into university students’ intentions to use mobile educational apps. International Journal of Enterprise Information Systems, 15(1), 24–44. https://doi.org/10.4018/IJEIS.2019010102

Swierenga, S. J., Propst, D. B., Ismirle, J., Figlan, C., & Coursaris, C. K. (2014). Mobile design usability guidelines for outdoor recreation and tourism. In F. F.-H. Nah (Ed.), HCI in business (LNCS 8527, pp.627–638). Springer. https://doi.org/10.1007/978-3-319-07293-7_61

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540

Wang, H.-Y., & Wang, S.-H. (2010). User acceptance of mobile internet based on the unified theory of acceptance and use of technology: Investigating the determinants and gender differences. Social Behavior and Personality: An International Journal, 38, 415–426. https://doi.org/10.2224/sbp.2010.38.3.415

Williamson, P. (2021). Skimming and scanning. Academic Writing Skills. https://uq.pressbooks.pub/academicwritingskills/chapter/skimming-and-scanning/

Zaller, J., & Feldman, S. (1992). A simple theory of the survey response: Answeringquestions versus revealing preferences. American Journal of Political Science, 36(3), 579–616. https://doi.org/10.2307/2111583

Zou, S. S., Tan, K. P., & Li, X. (2018, June). Mobile versus PC: Does device type affect online survey response quality for tourism research? [Paper presentation]. Travel and Tourism Research Association: Advancing Tourism Research Globally, Miami, FL. https://www.researchgate.net/publication/327681107