Mechanical properties and biodegradation of Poly(butylene succinate)/silkworm cocoon composites
Main Article Content
Abstract
In this study, poly(butylene succinate)/silkworm cocoon composites were prepared in the following ratios: 100/0, 90/10, 80/20, 70/30, and 60/40. The mechanical properties (tensile, impact, and hardness tests), biodegradation properties, and morphological characteristics of the composites were examined. The results demonstrated that the Young's modulus, impact strength, and hardness of the composites increased with an increase in the amount of silkworm cocoon, while the tensile strength and elongation at break of the composites decreased. An assessment of the decomposition of poly(butylene succinate)/silkworm cocoon composites buried in soil for 4, 8, and 10 weeks showed that increasing the amount of silkworm cocoons in the composites resulted in increased biodegradation. Moreover, the morphology of the specimen after impact testing was examined using the SEM technique. The SEM images showed that the silkworm cocoon fibers were distributed in the polymer matrix, indicating the incompatibility of the silk and poly(butylene succinate) matrix. This incompatibility resulted in composite materials with decreased tensile strength and elongation at break.
Article Details
References
Abdollahi Moghaddam, M. R., Hesarinejad, M. A., & Javidi, F. (2023). Characterization and optimization of polylactic acid and polybutylene succinate blend/starch/wheat straw biocomposite by optimal custom mixture design. Polymer Testing, 121, Article 108000. https://doi.org/10.1016/j.polymertesting.2023.108000
Botev, M., Betchev, H., Bikiaris, D., & Panayiotou, C. (1999). Mechanical properties and viscoelastic behavior of basalt fiber-reinforced polypropylene. Journal of Applied Polymer Science, 74(3), 523–531. https://doi.org/10.1002/(SICI)1097-4628(19991017)74:3<523::AID-APP7>3.0.CO;2-R
Calabia, B., Ninomiya, F., Yagi, H., Oishi, A., Taguchi, K., Kunioka, M., & Funabashi, M. (2013). Biodegradable poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent. Polymers, 5(1), 128–141. https://doi.org/10.3390/polym5010128
Chen, S., Cheng, L., Huang, H., Zou, F., & Zhao, H.-P. (2017). Fabrication and properties of poly(butylene succinate) biocomposites reinforced by waste silkworm silk fabric. Composites Part A: Applied Science and Manufacturing, 95, 125–131. https://doi.org/10.1016/j.compositesa.2017.01.004
Clarizio, S. C., & Tatara, R. A. (2012). Tensile strength, elongation, hardness, and tensile and flexural moduli of PLA filled with glycerol-plasticized DDGS. Journal of Polymers and the Environment, 20(3), 638–646. https://doi.org/10.1007/s10924-012-0452-3
de Albuquerque, A. C., Joseph, K., de Carvalho, L. H., & d'Almeida, J. R. M. (2000). Effect of wettability and ageing conditions on the physical and mechanical properties of uniaxially oriented jute-roving-reinforced polyester composites. Composites Science and Technology, 60(6), 833–844. https://doi.org/10.1016/S0266-3538(99)00188-8
Mamatha, G. M., Dixit, P., Krishna, R. H., & Girish Kumar, S. (2024). Polymer-based composites for electromagnetic interference (EMI) shielding: The role of magnetic fillers in effective attenuation of microwaves, a review. Hybrid Advances, 6, Article 100200. https://doi.org/10.1016/j.hybadv.2024.100200
Han, S. O., Ahn, H. J., & Cho, D. (2010). Hygrothermal effect on henequen or silk fiber reinforced poly(butylene succinate) biocomposites. Composites Part B: Engineering, 41(6), 491–497. https://doi.org/10.1016/j.compositesb.2010.05.003
Hong, J., Luo, N., Zhang, Z., Zhang, L., Zhang, G., Ye, L., Ray, S. S., & Li, Y. (2024). Regulated orientation and exfoliation of flaky fillers by close packing structures in polymer composites for excellent thermal conduction and EMI shielding. Composites Part B: Engineering, 275, Article 111357. https://doi.org/10.1016/j.compositesb.2024.111357
Huang, Z., Qian, L., Yin, Q., Yu, N., Liu, T., & Tian, D. (2018). Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber. Polymer Testing, 66, 319–326. https://doi.org/10.1016/j.polymertesting.2018.02.003
Johansson, M., Skrifvars, M., Kadi, N., & Dhakal, H. N. (2023). Effect of lignin acetylation on the mechanical properties of lignin-poly-lactic acid biocomposites for advanced applications. Industrial Crops and Products, 202, Article 117049. https://doi.org/10.1016/j.indcrop.2023.117049
Nachod, B., Keller, E., Hassanein, A., & Lansing, S. (2021). Assessment of petroleum-based plastic and bioplastics degradation using anaerobic digestion. Sustainability, 13(23), Article 13295. https://doi.org/10.3390/su132313295
Nithikarnjanatharn, J., & Samsalee, N. (2022). Effect of cassava pulp on physical, mechanical, and biodegradable properties of poly(butylene succinate)-based biocomposites. Alexandria Engineering Journal, 61(12), 10171–10181. https://doi.org/10.1016/j.aej.2022.03.052
Peñas, M. I., Criado-Gonzalez, M., Martínez de Ilarduya, A., Flores, A., Raquez, J.-M., Mincheva, R., Müller, A. J., & Hernández, R. (2023). Tunable enzymatic biodegradation of poly(butylene succinate): Biobased coatings and self-degradable films. Polymer Degradation and Stability, 211, Article 110341. https://doi.org/10.1016/j.polymdegradstab.2023.110341
Prasoetsopha, N., Thainoi, P., Jinnavat, R., Charerntanom, W., Hasook, A., & Singsang, W. (2020). Morphological and mechanical properties of natural rubber compound/poly(butylene succinate) blend. IOP Conference Series: Materials Science and Engineering, 840(1), Article 012013. https://doi.org/10.1088/1757-899X/840/1/012013
Rajgond, V., Mohite, A., More, N., & More, A. (2024). Biodegradable polyester-polybutylene succinate (PBS): A review. Polymer Bulletin, 81(7), 5703–5752. https://doi.org/10.1007/s00289-023-04998-w
Rodriguez-Uribe, A., Harder, N., Misra, M., & Mohanty, A. K. (2023). Biocomposites from poly(butylene succinate-co-butylene adipate) biodegradable plastic and hop natural fiber: Studies on the effect of compatibilizer on performance of the composites. Composites Part C: Open Access, 12, Article 100408. https://doi.org/10.1016/j.jcomc.2023.100408
Royer, S.-J., Greco, F., Kogler, M., & Deheyn, D. D. (2023). Not so biodegradable: Polylactic acid and cellulose/plastic blend textiles lack fast biodegradation in marine waters. PLoS ONE, 18(5), Article e0284681. https://doi.org/10.1371/journal.pone.0284681
Sasimowski, E., Majewski, L., & Grochowicz, M. (2023). Study on the biodegradation of poly(butylene succinate)/wheat bran biocomposites. Materials, 16(21), Article 6843. https://doi.org/10.3390/ma16216843
Seculi, F., Espinach, F. X., Julián, F., Delgado-Aguilar, M., Mutjé, P., & Tarrés, Q. (2022). Evaluation of the strength of the interface for abaca fiber reinforced HDPE and BioPE composite materials, and its influence over tensile properties. Polymers, 14(24), Article 5412. https://doi.org/10.3390/polym14245412
Sena, B., Aceña, J. L., Novella Robisco, J. L., Monje Martínez, B., Martí Montaner, L., & Fernández-Bachiller, M. I. (2023). Effectiveness of different immobilized Candida antarctica lipase b (iCaLB) in the production of biobased oligoester derivatives from poly(butylene succinate) (PBS) and poly(butylene adipate) (PBA). European Polymer Journal, 201, Article 112575. https://doi.org/10.1016/j.eurpolymj.2023.112575
Singsang, W., Suetrong, J., Choedsanthia, T., Srakaew, N. L.-o., Jantrasee, S., & Prasoetsopha, N. (2021). Properties of biodegradable poly(butylene succinate) filled with activated carbon synthesized from waste coffee grounds. Journal of Materials Science and Applied Energy, 10(3), 87–95. https://doi.org/10.14456/jmsae-ceae.2021.32
Wei, X.-F., Capezza, A. J., Cui, Y., Li, L., Hakonen, A., Liu, B., & Hedenqvist, M. S. (2022). Millions of microplastics released from a biodegradable polymer during biodegradation/enzymatic hydrolysis. Water Research, 211, Article 118068. https://doi.org/10.1016/j.watres.2022.118068
Xie, C., Xiong, Q., Wei, Y., Li, X., Hu, J., He, M., Wei, S., Yu, J., Cheng, S., Ahmad, M., Liu, Y., Luo, S., Zeng, X., Yu, J., & Luo, H. (2023). Fabrication of biodegradable hollow microsphere composites made of polybutylene adipate co-terephthalate/polyvinylpyrrolidone for drug delivery and sustained release. Materials Today Bio, 20, Article 100628. https://doi.org/10.1016/j.mtbio.2023.100628
Zhou, H., Hu, D., Zhu, M., Xue, K., Wei, X., Park, C. B., Wang, X., & Zhao, L. (2023). Review on poly(butylene succinate) foams: Modifications, foaming behaviors and applications. Sustainable Materials and Technologies, 38, Article e00720. https://doi.org/10.1016/j.susmat.2023.e00720