Functional Properties of Hydrolysate Protein from House Cricket (Archeta domestica) extracted by Alcalase
Main Article Content
Abstract
In the present, the world population is increasing. The protein production from vegetable and livestock are inadequate and high production cost. Edible insects are the alternative of protein sources. The objective of this research was to studies the extraction and functional properties of hydrolysate protein from the House cricket (Archeta domestica) by Alcalase® at different concentrations (1, 3 and 5% w/w) for 24 h of hydrolysis time. The results showed that hydrolysis with 3% Alcalase® for 6 hr gave 80% degree of hydrolysis (DH) and 21% of yield extraction (base on soluble protein). Glutamic acid and valine contents were found 16.28 and 13.07 g/100 g sample, respectively. The solubility of hydrolysate protein at pH 12 was 96.97% and 53.75% at pH 4. Foaming ability and stability at pH 12 were 96.80% and 150%, respectively. Emulsifying index was similar in pH range 2 – 12 (13.52–18.13 m2/g). DPPH antioxidant activity was 17.45 mgTE /g sample. After hydrolysis, the size of hydrolysate protein molecules was decreased from 15–250 kDa to smaller than 10 kDa. It was suggested that hydrolysate protein from House cricket prepared by the 3% Alcalase® for 6 hr of hydrolysis gave the high contents of the extracted yield and the DH which can be further developed as a food supplement.
Article Details
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการเผยแพร่ในวารสารวิทยาศาสตร์และเทคโนโลยี มรย. นี้ ถือเป็นลิขสิทธิ์ของวารสารวิทยาศาสตร์และเทคโนโลยี มรย. หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากวารสารวิทยาศาสตร์และเทคโนโลยี มรย. ก่อนเท่านั้น
References
Adebowale, Y. A., Adebowale, K. O., & Oguntokun, M. O. 2005. Evaluation of nutritive properties of the large African cricket (Gryllidae sp.). Pakistan Journal of Scientific and Industrial Research, 48(4), 274-278.
Ademola, O., A., Omolara, A., H. & Abioye, O. R. (2017). Amino acids profile of Bee brood, Soldier termite, Snout beetle larva, Silkworm larva and pupa: Nutritional Implications. Advances in Analytical Chemistry, 7(2), 31–38.
Agugliaro, F.M., Muros,M.J.S., Barroso, F.G., Sánchez, A.M., Rojo, S. and Bañón, C.P. (2012). Insects for biodiesel production. Renewable and Sustainable Energy Reviews. 16(6), 3744-3753.
Bao, J., Zhang, X., Zheng, H.H., Ren, D.F. & Lu, J. (2018). Mixed Fermentation of Spirulina platensis with Lactobacillus plantarum and Bacillus subtilis by Random-centroid Optimization. Food Chemistry, 264, 64-72.
Benjakul, S. & Morrissey, M. (1997). Protein hydrolysates from Pacific whiting solid wastes. Journal of Agricultural and Food Chemistry, 45, 3423–3430.
Benzie, I.F.F. & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239, 70–76.
Binsan, W., Benjakul, S., Visessanguan, W., Roytrakul, S., Faithong, N., Tanaka, M. & Kishimura, H. (2008). Composition, Antioxidative and Oxidative Stability of Mungoong, A Shrimp Extract Paste, From the Cephalothorax of White Shrimp. Journal of Food Lipids, 15, 97-118.
Chobert, J. M., Bertrand–Harb. C. & Nicolas, M. G. (1988). Solubility and emulsifying properties of caseins and whey protein modified enzymatically by trypsin. Journal of Agricultural and Food Chemistry, 36, 674–677.
Eldridge A.D., Wolf W.J. and Hall P.K. (1963). Stable foams from unhydrolyzed soybean protein. Food Technology. 17: 1592-1595.
Ha, N., Jesus, G., Gonçalves, A., Oliveira, N., Sugai, J., Pessatti, N., Mouriño, J. & Fabregat, T. (2019). Sardine (Sardinella spp.) protein hydrolysate as growth promoter in South American catfish (Rhamdia quelen) feeding: Productive performance, digestive enzymes activity, morphometry and intestinal microbiology. Aquaculture, 500, 99-106.
Hall, F. (2017). Functional properties of whole tropical banded cricket (Gryllodes sigillatus) protein hydrolysates. A thesis submitted to the Faculty of Purdue University in Partial Fulfillment of the Requirements for the degree of Master of Science. Department of Food Science, West Lafayette, Indiana, USA.
Hall, F., Johnson, P.E. & Liceaga, A. (2018). Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein, Food Chemistry, 262: 39–47.
Jino, T., Siriwoharn, T., Laokuldilok, T. & Surawang, S. (2020). The Optimum Condition of Protein Hydrolysate Extractionfrom Mealworm (Tenebrio molitor). In The international conference on Food and applied bioscience 2020. 6th–7th February 2020. Chiang Mai, Chiang Mai University.
Ketnawa, S., Benjakul, S., Alvarez, O. & Rawdkuen, S. (2018). Fish Skin Gelatin Hydrolysates Produced by Visceral Peptidase and Bovine Trypsin: Bioactivity and Stability. Food Chemistry, 215, 383-390.
Klompong, V., Benjakul, S., Kantachote, D., Hayes, K.D. & Shahidi, F. (2008). Comparative study on antioxidative activity of yellow stripe trevally protein hydrolysate produced from Alcalase and Flavourzyme. International Journal of Food Science and Technology, 43, 1019–1026.
Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.
Moreno, P., Guadix, A., Guadix, E. & Jacobsen, C. (2016). Physical and Oxidative Stability of Fish Oil-in-water Emulsions Stabilized with Fish Protein Hydrolysates. Food Chemistry, 203, 124-135.
Munialo, C.D., Van der Linden, E., Akt, K. and de Jongh, H.H.J. (2015). Quantitative analysis of the network structure that underlines the transitioning in mechanical responses of pea protein gels. Food Hydrocolloids. 49: 104−117.
Pearce, K.N. & Kinsella, J.E. (1978). Emulsifying properties of proteins: Evaluation of a turbidimetric technique. Journal of Agriculture and Food Chemistry, 26(3), 716–723.
Purschke, B., Meinlschmidt, P., Horn, C., Rieder, O. & Jager, H. (2017). Improvement of techno–functional properties of edible insect protein from migratory locust by enzymatic hydrolysis. European Food Research and Technology, 244, 999–1013.
Razali, A.N., Sarbon, N.M. and Amin, A.M. (2015). Antioxidant activity and functional properties of fractionated cobia skin gelatin hydrolysate at different molecular weight. International Food Research Journal. 22(2): 651–660.
Sillero, J., Gharsallaoui, A. & Prentice, C. (2018). Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: an Overview. Marine Biotechnology, 20, 118-130.
Wegier, A., Alavez, V., López, J.P., Calzada, L. and Cerritos, R. (2017). Beef or grasshopper hamburgers: The ecological implications of choosing one over the other. Basic and Applied Ecology. 26: 89-100.
Yi, L., Lakemond, C.M.M., Sagis, L.M.C., Eisner–Schadler, V., van Huis, A. & van Boekel, M.J.A.S. (2013). Extraction and Characterization of Protein Fractions from Five Insect Species. Food Chemistry, 141, 3341–3348.
Yu, L., Yang, W., Sun, J., Zhang, C., Bi, J. & Yang, Q. (2015). Preparation, Characterisation and Physicochemical Properties of the Phosphate Modified Peanut Protein Obtained from Arachin Conarachin L. Food Chemistry, 170, 169-179.
Zhao, X., Vázquez–Gutiérrez, J.L., Johansson, D.P., Landberg, R. & Langton, M. (2016). Yellow Mealworm Protein for Food Purposes – Extraction and Functional Properties. PLoS ONE Journal, 11(2), e0147791.