Effect of House Cricket Meal (Acheta domestica) on Egg Production, Egg Quality and Blood Biochemical Profile of Japanese Quail (Coturnix coturnix japonica)
Main Article Content
Abstract
House crickets contain a high protein content, which might be a source of protein in the Japanese quail diet. Therefore, this research aimed to study the effect of house cricket meals on egg production egg quality and the blood biochemical profile of Japanese quail. A total of 200 laying Japanese quail, 9 weeks of age were randomly assigned to 5 groups with 4 replicates of 10 birds. The birds were fed a dietary treatment containing 5 levels different of house cricket meals 0, 2, 4, 6 and 8% in diet under completely randomized design. The study was conducted for 10 weeks. The results showed that feed intake, hen day production, feed conversion ratio, egg weight, egg mass, albumen weight, yolk weight, eggshell thickness, yolk color, hematocrit and hemoglobin were not statistically different (P>0.05). Haugh unit of quails fed with 6% and 8% house cricket meal in diet were higher than other groups (P<0.01). Therefore, it is possible to use 8% of house crickets meal to replace 100% fishmeal in the diet of laying Japanese quail.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการเผยแพร่ในวารสารวิทยาศาสตร์และเทคโนโลยี มรย. นี้ ถือเป็นลิขสิทธิ์ของวารสารวิทยาศาสตร์และเทคโนโลยี มรย. หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากวารสารวิทยาศาสตร์และเทคโนโลยี มรย. ก่อนเท่านั้น
References
Agina, O. A., Ezema, W. S. & Iwuoha, E. M. (2017). The haematology and serum biochemistry profile of adult Japanese quail (Coturnix Coturnix Japonica). Notulae Scientia Biologicae, 9(1), 67-72.
Al-Qazzaz, M. F. A., Ismail, D., Akit, H. & Idris, L. H. (2016). Effect of using insect larvae meal as a complete protein source on quality and productivity characteristics of laying hens. Revista Brasileira de Zootecnia, 45(9), 518-523.
AOAC. (1990). Official method of analysis of Analysis. (15th ed.). Washington, D.C: Association of Official Analytical Chemist.
Bawa, M., Songsermpong, S., Kaewtapee, C. & Chanput, W. (2020). Effect of diet on growth performance, feed conversion, and nutrient content of the house cricket. Journal of Insect Science, 20(2), 1-10.
Brah, N., Issa, S. & Houndonougbo, F. M. (2017). Effect of grasshopper meal on laying hens performance and eggs quality characteristics. Indian Journal of Animal Sciences, 87(8), 1005-1010.
Clinical Diagnostic Division. (1990). Veterinary Reference Guide: A summary of Reference Intervals for use with KODAK AKTACHEM Products. Rochester, New York: Eastman Kodak Company.
Dewi, S. H. C. & Setiohadi, J. (2010). The effect of the usage of silkworms (Bombyx mori) pupae in rations on meal quail performance. Journal AgriSains, 1(1), 1-6.
Elahi, U., Xu, C. C., Wang, J., Lin, J., Wu, S. G., Zhang, H. J., et al. (2022). Insect meal as a feed ingredient for poultry. Animal Bioscience, 35(2), 332-346.
Fernandez-Cassi, X., Supeanu, A., Vaga, M., Jansson, A., Boqvist, S. & Vagsholm, I. (2019). The house cricket (Acheta domesticus) as a novel food: a risk profile. Journal of Insects as Food and Feed, 5(2), 137-157.
Fitroh, B. A., Respati, A. N. & Dughita, P. A. (2020). The effect of cricket flour addition (Acheta Domesticus) in feed on production performance of quail (Cortunix cortunix Japonica). Bantara journal of animal science, 2(1), 36-43.
Jayanegara, A., Mohammad, M., Sholikin, M. M., Sabila, B. A. N., Suharti, S. & Astuti, D. A. (2017). Lowering chitin content of cricket (Gryllus assimilis) through exoskeleton removal and chemical extraction and its utilization as a ruminant feed in vitro. Pakistan Journal of Biological Sciences, 20, 523-529.
Kouatcho, F. D., Rusu, R. M. R., Mohamadou, B., Aoudou, B., Pop, I. M., Usturoi, M. G., et al. (2022). Valorization of cricket, Aceta domesticus (Linnaeus, 1758), flour as a source of dietary protein in Japanese quail, Coturnix japonica (Temminck and Schlegel, 1849), farming. Journal of advanced veterinary and animal research, 9(2), 310-322.
Nopparatmaitree, M., Jeenpongpan, S., Naratho, P., Hoonjun, S., Rungjakkawanchai, O., Pantong, A., et al. (2018). Effect of betaine supplementation in laying hen diet on productive performance, hematology, egg quality, cholesterol and fatty acid profile in yolk. Journal of Agricultural Research and Extension, 35(3), 29-42. (in Thai)
NRC. (1994). Nutrient requirements of poultry (9th ed.). Washington, D.C: National Academy Press.
Oluyemi, J. A. & Roberts, F. A. (1979). Poultry production in warm wet climate. London: Macmillan press Ltd.
Permatahati, D., Mutia, R. & Astuti, D. A. (2019). Effect of cricket meal (Gryllus bimaculantus) on production and physical quality of Japanese quail egg. Tropical Animal Science, 42(1), 53-58.
Suvanpanich, T., Hornopparat, L., Surachet, M., Polrob, S., Wongthip, V., Asawaroj. S., et al. (2017). Research on the amendment of emergency decree on fisheries, B. E. 2015. Huachiew Chalermprakiet Law Journal, 8(1), 12-28. (in Thai)
Thompson, B. K. & Hamilton, R. M. G. (1982). Comparison of the precision and accuracy of flotation and Arachimedes’ methods for measuring the specific gravity of egg. Poultry Science, 61(8), 1599-1605.
Udomsil, N., Imsoonthornruksa, S., Gosalawit, C. & Ketudat-Cairns, M. (2019). Nutritional values and functional properties of house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus). Food Science and Technology Research, 25(4), 597-605.
Van Huis, A. (2020). Edible crickets, but which speies?. Journal of Insects as Food and Feed, 6(2), 91-94.
Zhang, M., Hettiarachchy, N. S., Horax, R., Kanan, A., Praisoody, A., Muhundan, A., et al. (2011). Phytochemicals, antioxidant and antimicrobial activity of Hibiscus sabdariffa, Centella asiatica, Moringa oleifera and Murraya koenigii leaves. Journal of Medicinal Plants Research, 5(30), 6672-6680.