Chemical Composition and Antibacterial Activities of Rhizome Extract from Curcuma aromatica Salisb.
Main Article Content
Abstract
In this study, the bioactive compound was extracted from Curcuma aromatica rhizome. The chemical composition of bioactive compound extract was determined by Liquid Chromatography - Mass Spectrometry (LC-MS). Five compositions were identified and were classified into 2 groups namely, (1) Nonvolatile Curcuminoids: Bisdemethoxycurcumin, Demethoxycurcumin, Curcumin and (2) Volatile compounds: Furanodienone and Turmerone. Furthermore, the crude extract was analyzed to evaluate their antibacterial activity against 3 human pathogenic strains: Staphylococcus aureus DMST 8840, Staphylococcus epidermidis DMST 15505 and Methicillin-resistant Staphylococcus aureus (MRSA) DMST 20651. The results revealed that C. aromatica crude extract exhibited antibacterial activity against all tested bacterial strains with minimal inhibitory concentration (MIC) value of 25.60 mg/ml and minimal bactericidal concentration (MBC) values in the range of 25.60-51.20 mg/ml.
Article Details
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการเผยแพร่ในวารสารวิทยาศาสตร์และเทคโนโลยี มรย. นี้ ถือเป็นลิขสิทธิ์ของวารสารวิทยาศาสตร์และเทคโนโลยี มรย. หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากวารสารวิทยาศาสตร์และเทคโนโลยี มรย. ก่อนเท่านั้น
References
Ashraf, K., Mujeeb, M., Ahmad, A., Ahmad, N. & Amir, M. (2015). Determination of curcuminoids in Curcuma longa Linn. by UPLC/Q-TOF–MS: an application in turmeric cultivation. Journal of Chromatographic Science, 53(8), 1346-1352.
Basri, D.F. & Fan, S.H. (2005). The potential of aqueous and acetone extracts of galls of Quercus infectoria as antibacterial agents. Indian Journal of Pharmacology, 37(1), 26-29.
Chao, I.C., Wang, C.M., Li, S.P., Lin, L.G., Ye, W.C. & Zhang, Q.W. (2018). Simultaneous quantification of three curcuminoids and three volatile components of Curcuma longa using pressurized liquid extraction and high-performance liquid chromatography. Molecules, 23(7), 1-9.
Deng, Z., Liu, Q., Wu, W. & Wang, H. (2020). Validation and application of a novel UHPLC–MS/MS method for the measurement of furanodienone in rat plasma. Biomedical Chromatography, 34(1), 1-8.
Enright, M.C., Robinson, D.A., Randle, G., Feil, E.J., Grundmann, H., & Spratt, B.G. (2002). The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proceedings of the National Academy of Sciences of the United States of America, May 28, 2002. 99(11), 7687-7692.
Essien, E.E., Newby, J.S., Walker, T.M., Setzer, W.N., & Ekundayo, O. (2015). Chemotaxonomic characterization and in-vitro antimicrobial and cytotoxic activities of the leaf essential oil of Curcuma longa grown in southern Nigeria. Medicines, 2(4), 340-349.
Kumar, A., Chomwal, R., Kumar, P. & Renu, S. (2009). Anti-inflammatory and wound healing activity of Curcuma aromatica Salisb extract and its formulation. Journal of Chemical and Pharmaceutical Research, 1(1), 304-310.
Kumar, S., Narain, U., Tripathi, S. & Misra, K. (2001). Syntheses of curcumin bioconjugates and study of their antibacterial activities against β-lactamase-producing microorganisms. Bioconjugate Chemistry, 12(4), 464-469.
Lee, J., Jung, Y., Shin, J.H., Kim, H., Moon, B., Ryu, D., et al. (2014). Secondary metabolite profiling of Curcuma species grown at different locations using GC/TOF and UPLC/Q-TOF MS. Molecules, 19(7), 9535-9551.
Li, Y., Wo, J.M., Liu, Q., Li, X. & Martin, R.C.G. (2009). Chemoprotective effects of Curcuma aromatica on esophageal carcinogenesis. Annals of Surgical Oncology, 16, 515-523.
Liu, B., Gao, Y.Q., Wang, X.M., Wang, Y.C. & Fu, L.Q. (2014). Germacrone inhibits the proliferation of glioma cells by promoting apoptosis and inducing cell cycle arrest. Molecular Medicine Reports, 10(2), 1046-1450.
Panich, U., Kongtaphan, K., Onkoksoong, T., Jaemsak, K, Phadungrakwittaya, R., Thaworn, A., et al. (2010). Modulation of antioxidant defense by Alpinia galanga and Curcuma aromatica extracts correlates with their inhibition of UVA-induced melanogenesis. Cell Biology and Toxicology, 26(2), 103-116.
Pant, N., Misra, H. & Jain, D.C. (2010). Phytochemical investigation of ethyl acetate extract from Curcuma aromatica Salisb. rhizomes. Arabian Journal of Chemistry, 6, 279-283.
Rahman, A.F.M.M., Angawi, R.F. & Kadi, A.A. (2015). Spatial localisation of curcumin and rapid screening of the chemical compositions of turmeric rhizomes (Curcuma longa Linn.) using Direct Analysis in Real Time-Mass Spectrometry (DART-MS). Food Chemistry, 173, 489-494.
Rahman, M., Kuhn, I., Rahman, M., Olsson-Liljequist, B. & Mollby, R. (2004). Evaluation of a scanner-assisted colorimetric MIC method for susceptibility testing of gram-negative fermentative bacteria. Applied and Environmental Microbiology, 70(4), 2398–2403.
Sikha, A., Harini, A. & Hegde, P.L. (2015). Pharmacological activities of wild turmeric (Curcuma aromatica Salisb): a review. Journal of Pharmacognosy and Phytochemistry, 3(5), 1-4.
Siramon, P & Weanukul, R. (2020). Using ultrasound-assisted solvent extraction of phenolic compounds from Curcuma aromatica Salisb. rhizomes. Journal of Science & Technology, Ubon Ratchathani University, 22(1), 40-44. (in Thai)
Xiang, H., Zhang, L., Yang, Z., Chen, F., Zheng, X. & Liu, X. (2017). Chemical compositions, antioxidative,
antimicrobial, anti-inflammatory and antitumor activities of Curcuma aromatica Salisb. essential oils. Industrial Crops and Products, 108, 6-16.
Yin, G., Cheng, X., Tao, W., Dong, Y., Bian, Y., Zang, W., et al. (2018). Comparative analysis of multiple representative components in the herb pair Astragali Radix-Curcumae Rhizoma and its single herbs by UPLC-QQQ-MS. Journal of Pharmaceutical and Biomedical Analysis, 148, 224-229.