Effects of fertilizer type on protein and carbohydrate fractions of two varieties of Arachis hypogaea fodder

Main Article Content

P.A. Dele
B.T. Akinyemi
C.C. Anotaenwere
F.E. Enwete
O.B. Kasim
T.A. Amole
O. Kenneth-Obosi
O.S. Sowande
O.M. Arigbede
A.O. Jolaosho

Abstract

The fractionation of protein and carbohydrate of two varieties of A. hypogaea affected by fertilizer type was investigated. The crude protein (CP) of the A. hypogaea varieties was subdivided into five fractions; A1 (crude protein soluble in the borate-phosphate buffer and tungstic acid solution), B1 (true protein soluble in buffer solution and precipitated by the tungstic solution), B2 (true protein insoluble in buffer solution but soluble in the neutral-detergent solution), B3 (true protein soluble in acid-detergent solution but insoluble in neutral-detergent solution), and C (true protein insoluble in the acid-detergent
solution). While the carbohydrate (CHO) was fractionalized into four; CA (rapidly degradable CHO), CB1 (intermediately degradable CHO), CB2 (slowly degradable CHO), and CC (completely undegradable NDF). The experiment was a 3 × 2 factorial in split-plot design, with the fertilizer type as the main plot (control, NPK, and poultry droppings) and the variety as the sub-plot (SAMNUT 22 and Local). The total treatment combination is six with three replications. The fertilizer type affected all the CP fractions except for fraction C. The interaction of fertilizer type × variety influenced all the CP fractions with a range of 65.40 ± 0.21 to 80.97 ± 0.01 g/kg DM, 5.01 ± 0.01 to 5.69 ± 0.03 g/kg DM, 42.77 ± 0.08 to 51.40 ± 0.01 g/kg DM, and 58.34 ± 0.14 to 69.93 ± 0.01 g/kg DM for CP fraction A, B1, B2, and B3, respectively with the organic fertilized local variety having the highest values. SAMNUT 22 without fertilizer recorded the highest value for CP fraction C. Varietal difference was observed for all the CP fractions. The CHO fractions were affected (P < 0.05) by the fertilizer type and varietal difference. The unfertilized SAMNUT 22 was observed to have the highest values for CHO fraction CA, CB1, and CC, whereas the same variety to which inorganic fertilizer was applied recorded the highest value for CB2. The organic fertilized local variety of A. hypogaea had a higher portion of the soluble fraction of CP, and a lower portion of cell wall bounded CP fraction making it ruminally beneficial if fed to ruminants which also reflected in the utilizable CP.

Article Details

Section
Research Articles

References

Abayomi, Y.A., T.V. Ajibade, O.F. Sammuel and B.F. Sa’adudeen. 2008. Growth and yield response of cowpea (Vignia unquiculata (L.) Walp.) genotypes to nitrogen fertilizer (NPK) application in southern guinea savanna zone of Nigeria. Asian J. Plant Sci. 7(2): 170–176.

Abbasi, D., Y. Rouzbehan and J. Rezaei. 2012. Effect of harvest date and nitrogen fertilization rate on the nutritive value of amaranth forage (Amaranthus hypochondriacus). Anim. Feed Sci. Technol. 171(1): 6–13.

Abdul Rahman, N., A. Larbi, B. Kotu, F.M. Tetteh and I. Hoeschle-Zeledon. 2018. Does nitrogen matter for legumes? Starter nitrogen effects on biological and economic benefits of cowpea (Vigna unguiculata L.) in Guinea and Sudan savanna of West Africa. Agronomy. 8: 120.

Adda, K.J., W. Addah, N. Abdul Rahman and T.A. McAllister. 2021. Inter-row plant spacing effects on grain and fodder yields, growth performance, digestibility and manure quality of sheep. Peanut Sci. 48(2): 144–152.

Ansah, T., A. Sahoo, N. Abdul Rahman, P.K. Kumawat and R.S. Bhatt. 2021. In vitro digestibility and methane gas production of fodder from improved cowpea (Vigna unguiculata L.) and groundnut (Arachis hypogaea L.) varieties. Sci. Afr. 13: e00897.

Ball, D.M., M. Collins, G.D. Lacefield, N.P. Martin, D.A. Mertens, K.E. Olson, D.H. Putnam, D.J. Undersander and M.W. Wolf. 2001. Understanding Forage Quality. American Farm Bureau Federation Publication 1-01, Park Ridge, Illinois, USA.

Bationo, A. and B.R. Ntare. 2000. Rotation and nitrogen fertilizer effects on pearl millet, cowpea, and groundnut yield and soil chemical properties in a sandy soil in the semi-arid tropics, West Africa. J. Agric. Sci. 134: 277–284.

Berça, A.S., A.D.S. Cardoso, V.Z. Longhini, L.O. Tedeschi, R.M. Boddey, R.A. Reis and A.C. Ruggieri. 2021. Protein and carbohydrate fractions in warm-season pastures: effects of nitrogen management strategies. Agronomy. 11: 847.

Blümmel, M., P. Ratnakumar and V. Vadez. 2012. Opportunities for exploring variations in haulm fodder traits of intermittent drought tolerant lines in a reference collection of groundnut (Arachis hypogea L). Field Crops Res. 126: 200–206.

Buxton, D.R. and S.L. Fales. 1994. Plant environment and quality, pp. 155–199. In: G.C. Fahey Jr., (Ed), Forage Quality, Evaluation, and Utilization. American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, USA.

Cherney, J.H. and M.H. Hall. 2008. Forage quality in perspective. Penn State Extension. Agronomy Facts 30. Penn State College of Agricultural Sciences, The Pennsylvania State University, Pennsylvania, USA.

Chimphango, S.B.M., L.H. Gallant, Z.C. Poulsen, M.I. Samuels, D. Hattas, O.E. Curtis, A.M. Muasya, C. Cupido, J.S. Boatwright and J. Howieson. 2020. Native legume species as potential fodder crops in the Mediterranean renosterveld shrubland, South Africa. J. Arid Environ. 173: 104015.

Cuomo, G.J. and B.E. Anderson. 1996. Nitrogen fertilization and burning effects on rumen protein degradation and nutritive value of native grasses. Agron. J. 88(3): 439–442.

da Silva, M.S., G.F. Tremblay, G. Bélanger, J. Lajeunesse, Y.A. Papadopoulos, S.A.E. Fillmore and C.C. Jobim. 2014. Forage energy to protein ratio of several legume–grass complex mixtures. Anim. Feed Sci. Technol. 188: 17–27.

Dele, P., B. Akinyemi, O. Omikunle, F. Enwete, O. Aiyesa, O. Awoola, C. Anotaenwere, T. Amole, A. Jolaosho and O.M. Arigbede. 2022. Protein fraction of soybean herbage as influenced by the stage of growth. Animal - Science Proceedings. 13(1): 14.

Dele, P.A., O.B. Kasim, B.T. Akinyemi, O. Kenneth-Obosi, F.E. Salawu, C.C. Anotaenwere, A.O. Jolaosho and O.M. Arigbede. 2019. Forage yield and nutritive quality of two groundnut (Arachis Hypogaea L) varieties as influenced by fertilizer types. J. Agric. Sci. & Env. 19(1–2): 1–16.

Dugje, I.Y., L.O. Omoigui, F. Ekeleme, A.Y. Kamara and H. Ajeigbe. 2009. Farmers’ Guide to Cowpea Production in West Africa. International Institute of Tropical Agriculture, Ibadan, Nigeria.

Edwards, G.R., A.J. Parsons, S. Rasmussen and R.H. Bryant. 2007. High sugar ryegrasses for livestock system in New Zealand. Proceedings of the New Zealand Grassland Association. 69: 161–171.

Falahatizow, J., M. Danesh Mesgaran, A.R. Vakili, M. Kafi and M.D. Stern. 2019. In vitro utilizable crude protein at the duodenum of dairy cows of various ecotypes of Kochia scoparia fertilized with nitrogen. Iran. J. Appl. Anim. Sci. 9(3): 409–418.

Fox, D.G., L.O. Tedeschi, T.P. Tylutki, J.B. Russell, M.E. Van Amburgh, L.E. Chase, A.N. Pell and T.R. Overton. 2004. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 112: 29–78.

Gierus, M., A. Herrmann, S. Kruse, J. Kleen and F. Taube. 2006. Variation in the non-protein nitrogen content (fraction A) of several forages during the growing period, pp. 595–597. In: Proceedings of the 21st General Meeting of the European Grassland Federation. 3–6 April 2006, Badajoz, Spain.

Gierus, M., E.M. Pötsch and F. Weichselbaum 2016. Influence of nitrogen fertilization on the crude protein fractions of grassland forage, pp. 245–247. In: M. Hoglind, A.K. Bakken, K.A. Hovstad, E. Kallioniemi, H. Riley, H. Steinshamn and L. Øsstrem, (Eds), The Multiple Roles of Grassland in the European Bioeconomy. Grassland Science in Europe. Volume 21. Norwegian Institute of Bioeconomy Research, Norway.

Griffith, W.K. 1974. Satisfying the nutritional requirements of established legumes, pp. 147–169. In: D.A. Mays, (Ed), Forage Fertilization. Soil Science Society of America, Madison, USA.

Hall, M.B., W.H. Hoover, J.P. Jennings and T.K. Miller-Webster. 1999. A method for partitioning neutral detergent-soluble carbohydrates. J. Sci. Food Agric. 79(15): 2079–2086.

Hariadi, B.T. and B. Santoso. 2010. Evaluation of tropical plants containing tannin on in vitro methanogenesis and fermentation parameters using rumen fluid. J. Sci. Food Agric. 90: 456–461.

Hernández, E.A., F.I.J. Lagunes, A.N. Pell, M.M. Lagunes, J.M.P. Rodríguez and R.W. Blake. 2020. In vitro ruminal degradation of carbohydrate fractions in tropical grasses fertilized with nitrogen. Rev. Mex. Cienc. Pecu. 11(1): 266–282.

Jafari, A.A. 2012. Environmental and genetic variation for water soluble carbohydrate content in cool season forage grasses, pp. 373–388. In: C.F. Chang, (Ed), Carbohydrates – Comprehensive Studies on Glycobiology and Glycotechnology. InTech, Rijeka, Croatia.

Johnson, C.R., B.A. Reiling, P. Mislevy and M.B. Hall. 2001. Effects of nitrogen fertilization and harvest date on yield, digestibility, fiber, and protein fractions of tropical grasses. J. Anim. Sci. 79(9): 2439–2448.

Jung, H.G. and M.S. Allen. 1995. Characteristics of plant cell wall affecting intake and digestibility of forages by ruminants. J. Anim. Sci. 73(9): 2774–2790.

Konlan, S., J. Sarkodies-Addo, E. Asare and M.J. Kombiok. 2012. Groundnut (Arachis hypogaea L.) varietal response to spacing in the Guinea Savanna agro-ecological zone of Ghana: nodulation and nitrogen fixation. Agric. Biol. J. N. Am. 4(3): 324–335.

Lanzas, C., L.O. Tedeschi, S. Seo and D.G. Fox. 2007. Evaluation of protein fractionation systems used in formulating rations for dairy cattle. J. Dairy Sci. 90: 507–521.

Larbi, A., D.D. Dung, P.E. Olorunju, J.W. Smith, R.J. Tanko, I.R. Muhammad and I.O. Adekunle. 1999. Groundnut (Arachis hypogaea) for food and fodder in crop livestock systems: forage and seed yields, chemical composition and rumen degradation of leaf and stem fractions of 38 cultivars. Anim. Feed Sci. Technol. 77: 33–47.

Licitra, G., T.M. Hernandez and P.J. Van Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57(4): 347–358.

Mahmoud, A.E.M., M.S. Abbas, A. Cieslak and M. Szumacher-Strabel. 2017. Evaluation of chemical composition and in vitro dry and organic matter digestibility of some forage plant species derived from Egyptian rangelands. J. Anim. Plant Sci. 27(5): 1573–1581.

McRoberts, K.C., D. Parsons, Q.M. Ketterings, T.T. Hai, N.H. Quan, N.X. Ba, C.F. Nicholson and D.J.R. Cherney. 2017. Urea and composted cattle manure affect forage yield and nutritive value in sandy soils of south-central Vietnam. Grass Forage Sci. 73(1): 132–145.

Miller, L.A., J.M. Moorby, D.R. Davies, M.O. Humphreys, N.D. Scollan, J.C. MacRae and M.K. Theodorou. 2001. Increased concentration of water-soluble carbohydrate in perennial ryegrass (Lolium perenne L.): milk production from late lactation dairy cows. Grass Forage Sci. 56(4): 383–394.

Murphy, A.M. and P.E. Colucci. 1999. A tropical forage solution to poor quality ruminant diets: a review of Lablab purpureus. Livest. Res. Rural. Dev. 11(2): 21.

Neumann, M., J.L. Nörnberg, G.F.M. Leão, E.H. Horst and D.N. Figueira. 2017. Chemical fractionation of carbohydrate and protein composition of corn silages fertilized with increasing doses of nitrogen. Cienc. Rural. 47(5): e20160270.

Nigam, S.N. and M. Blümmel. 2010. Cultivar-dependent variation in food feed-traits in groundnut (Arachis hypogea L.). Anim. Nutr. Feed Technol. 10S: 39–48.

Nocek, J.E. and J.B. Russell. 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci. 71(8): 2070–2107.

Oteng-Frimpong, R., S.P. Konlan and N.N. Denwar. 2017. Evaluation of selected groundnut (Arachis hypogaea L.) lines for yield and haulm nutritive quality traits. Int. J. Agron. 2017: 7479309.

Paterson, J., R. Cochran and T. Klopfenstein. 1996. Degradable and undegradable protein response of cattle consuming forage-based diets. In: M.B. Judkins and F.T. McCollum III, (Eds), Proceedings of the 3rd Grazing Livestock Nutrition Conference. Proc. West. Sec. Amer. Soc. Anim. Sci. 47(Suppl. 1): 94–103.

Pérez-Gil Romo, F., M.E. Carranco Jáuregui, M. Calvo Carrillo, L. Solano and T.D.J. Martínez Iturbe. 2014. Chemical characterization of native panicles and seed pods of the State of Guerrero, Mexico, for use in animal nutrition. Rev. Mex. Cienc. Pecu. 5(3): 307–319.

Peyraud, J.L. and L. Astigarraga. 1998. Review of the effect of nitrogen fertilization on the chemical composition, intake, digestion and nutritive value of fresh herbage: consequences on animal nutrition and N balance. Anim. Feed Sci. Technol. 72: 235–259.

Pradhan, P., G. Fischer, H. van Velthuizen, D.E. Reusser and J.P. Kropp. 2015. Closing yield gaps: how sustainable can we be?. PLoS ONE 10(6): e0129487.

Prasad, K.V.S.V., A.A. Khan, S. Vellaikumar, R. Devulapalli, Ch. Ramakrishna Reddy, S.N. Nigam and M. Blümmel. 2010. Observations on livestock productivity in sheep fed exclusively on haulms from ten different genotypes of groundnut. Anim. Nutr. Feed Technol. 10S: 121–126.

Rogers, J.R., R.W. Harvey, M.H. Poore, J.P. Mueller and J.C. Barker. 1996. Application of nitrogen from swine lagoon effluent to bermudagrass pastures: seasonal changes in forage nitrogenous constituents and effects of energy and escape protein supplementation on beef cattle performance. J. Anim. Sci. 74(5): 1126–1133.

Salazar-Cubillas, K.C. and U. Dickhoefer. 2021. Evaluating the protein value of fresh tropical forage grasses and forage legumes using in vitro and chemical fractionation methods. Animals. 11: 2853.

Samireddypalle, A., O. Boukar, E. Grings, C.A. Fatokun, P. Kodukula, R. Devulapalli, I. Okike and M. Blümmel. 2017. Cowpea and groundnut haulms fodder trading and its lessons for multidimensional cowpea improvement for mixed crop livestock systems in West Africa. Front. Plant Sci. 8: 30.

Sanchez, P.A. 2002. Soil fertility and hunger in Africa. Science. 295(5562): 2019–2020.

Sanchez, P.A. 2015. En route to plentiful food production in Africa. Nat. Plants. 1: 14014.

Santos, C.B., K.A. de Pinho Costa, W.F. de Souza, V.C. e Silva, P.S. Epifanio and H.S. Santos. 2018. Protein and carbohydrates fractionation in Paiaguas palisadegrass intercropped with grain sorghum in pasture recovery. Acta Sci. 41: e42693.

SAS. 2000. SAS/E-miner 3.0 Program. SAS Institute Inc., Cary, North Carolina, USA.

Sniffen, C.J., J.D. O’Connor, P.J. Van Soest, D.G. Fox and J.B. Russell. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. carbohydrate and protein availability. J. Anim. Sci. 70(11): 3562–3577.

Stojanović, B., N. Đorđević, A. Simić, A. Božičković, V. Davidović and A. Ivetić. 2020. The in vitro protein degradability of legume and sudan grass forage types and ensiled mixtures. Ankara Univ. Vet. Fak. Derg. 67: 419–425.

Tran, H., P. Salgado and P. Lecomte. 2009. Species, climate and fertilizer effects on grass fibre and protein in tropical environments. J. Agric. Sci. 147(5): 555–568.

Yu, P., D.A. Christensen, J.J. McKinnon and J.D. Markert. 2003. Effect of variety and maturity stage on chemical composition, carbohydrate and protein subfractions, in vitro rumen degradability and energy values of timothy and alfalfa. Can. J. Anim. Sci. 83(2): 279–290.

Zhao, G.Y. and J.E. Cao. 2004. Relationship between the in vitro-estimated utilizable crude protein and the Cornell Net Carbohydrate and Protein System crude protein fractions in feeds for ruminants. J. Anim. Physiol. Anim. Nutr. (Berl). 88(7–8): 301–310.