Production of Activated Carbon from Carbonized Thanaka Wood Using Phosphoric Acid Activation

Main Article Content

Rutchadaporn Chomsuansawan
Chanyut Krittasunankun
Ampira Charoensaeng
Noulkamol Arpornpong

Abstract

This research aims to study the physical and chemical properties of activated carbon derived from carbonized Tanaka wood that has been activated with phosphoric acid. The results indicate that the activation with phosphoric acid at a ratio of charcoal (g) to phosphoric acid (mL) of 1:3 at 700˚C for 1 hr. has the maximum adsorption of iodine and methylene blue of 650.14 ± 47.21 and 71.63 ± 47.21 mg/g, respectively. The study of the physical and chemical characteristics found that the carbonized charcoal from Tanaka wood consists of elemental compositions of calcium (54.05% wt.), potassium (21.22% wt.), phosphorus (9.49% wt.), and magnesium (6.38% wt.). The zeta potential on the surface charge at pH 7 is negative (-34.17). The functional groups found in the carbonized charcoal and activated carbon from Tanaka wood include O-H, C-H, C=C, and C=C (Aromatic), that are similar the functional groups of commercial-grade activated carbon. Moreover, the activated carbon from Tanaka wood and commercial-grade activated carbon exhibit statistically identical efficiency in methylene blue absorption (P>.05). Therefore, Tanaka wood has the potential to be further developed into quality activated carbon, which can add value to the products and reduce the import of activated carbon from abroad.

Article Details

How to Cite
Chomsuansawan, R., Krittasunankun, C. ., Charoensaeng, A. ., & Arpornpong, N. (2024). Production of Activated Carbon from Carbonized Thanaka Wood Using Phosphoric Acid Activation. Naresuan Agriculture Journal, 21(2), e0210208. retrieved from https://li01.tci-thaijo.org/index.php/aginujournal/article/view/265054
Section
Research Articles

References

มนตรี บุญจรัส. (2561). เทคนิควิธีการล้างสารพิษตกค้างในพืผักและผลไม้แบบชาวบ้าน. Thai Green Agro.

https://www.thaigreenagro.com.

ณัฐวิภา จงรัก. (2554). การผลิตถ่านกัมมันต์จากเมล็ดลำไย โดยการกระตุ้นด้วยซิงค์คลอไรด์และโพแทสเซียมไฮดรอกไซด์ (ปริญญานิพนธ์ปริญญามหาบัณฑิต, จุฬาลงกรณ์มหาวิทยาลัย). ThaiLIS. https://tdc.thailis.or.th/tdc/search_result.php

พรรษกร ใจประดับเพชร. (2549). การกำจัดแคดเมียมและสังกะสีในน้ำเสียสังเคราะห์ด้วยถ่านกัมมันต์ที่เตรียมจากกะลามะพร้าว และเมล็ดมะขาม (ปริญญานิพนธ์ปริญญามหาบัณฑิต, จุฬาลงกรณ์มหาวิทยาลัย). ThaiLIS. https://tdc.thailis.or.th/tdc/search_result.php

Ahmadpour, A., & Do, D. D. (1996). The preparation of active carbons from coal by chemical

and physical activation. Carbon, 34, 471-479.

Andersson, K. I., Eriksson, M., & Norgren, M. (2011). Removal of lignin from wastewater

generated by mechanical pulping using activated charcoal and fly ssh: Adsorption isotherms and thermodynamics. I&EC research, 50, 7705-8388.

Doğan, M., Sabaz, P., Bi̇ci̇l, Z., Kizilduman, B. K., & Turhan, Y. (2020). Activated carbon synthesis from tangerine peel and its use in hydrogen storage. Journal of the Energy Institute, 93, 2176-2185.

Eka, M. M, Alfatahb, T., & Supardanc, D. M. (2020). Synthesis and characterization of activated

carbon from Bambusa vulgaris striata using two-step KOH activation. Journal of Materials Research and Technology, 9, 6278-6286.

Huang, X., Shi, B., Hao, H., Su, Y., Wu, B., Lai, Z., Wang, C., Wang, Q., Yang, M., & Yu, J. (2020). Identifying the function of activated carbon surface chemical properties in the removability of two common odor compounds. Water research, 178, 715-797.

Julio A. F., Méndez, F. G., Medel, H., Gómez, R. S. G., González, M. B., Pérez, S. M., & Bazúa, C. D. D. (2019). Effectiveness of bagasse activated carbon in raw cane juice clarification. Food Bioscience, 32, 100437.

Kennedy, J. L., Vijaya, J. J., & Sekaran, G. (2004). Effect of two-stage process on the preparation and characterization of porous carbon composite from rice husk by phosphoric acid activation. Industrial and Engineering Chemistry Research, 43, 1832-1838.

Lua, C. A., & Guo, J. (1998). Preparation and characterization of chars from oil palm waste. Carbon, 36, 1663-1670.

Norouzi, S., Heidari, M., Alipour, V., Rahmanian, O., Fazlzadeh, M., Mohammadi-moghadam, F.,

Nourmoradi, H., Goudarzi, B., & Dindarloo, K. (2018). Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from date press cake; an agro-industrial waste. Bioresource Technology, 258, 48-56.

Phuangchik, T. (2015). Activated carbon from bamboo: does the market have a high demand.

Thai Science and Technology Journal, 6, 945-954.

Poedji, L. H., Muhammad, F., & Ridwan, M. (2018). Removal of procion red MX-5B from songket’s industrial wastewater in South Sumatra Indonesia using activated carbon-Fe3O4 composite. Sustainable Environment Research, 28, 158-164.

Rahman, A., Hango, H. J., Likius, S. D., Veikko, U. S., Jaime, J., Sandeep, B., & Jonnalagadda,

S. B. (2019). Chemical preparation of activated carbon from Acacia erioloba seed pods using H2SO4 as impregnating agent for water treatment: An environmentally benevolent approach. Journal of Cleaner Production, 237, 1177689.

Sahu, A., Subash, S. S., & Mishra, C. (2020). Economical way of processing activated carbon

from Calotropis gigantea and its suitability for application in Lithium/Sodium ion batteries. Diamond and Related Materials, 108, 107931.

Santos, T. M., Jesus, F. A., Silva, G. F., & Pontes, L. A. M. (2020). Synthesis of activated carbon

from oleifera moringa for removal of oils and greases from the produced water. Environmental Nanotechnology, Monitoring & Management, 14, 100357.

Song, G., Yao, R. D. Z., Chen, H., Romero, C., Lowe, T., Driscoll, G., Kreglow, B., & Baltrusaitis,

H. S. J. (2020). Anthracite coal-based activated carbon for elemental Hg adsorption in simulated flue gas: Preparation and evaluation. Flue, 275, 117921.

Sun, K., & Jiang, J. C. (2010). Preparation and characterization of activated carbon from rubber- seed shell by physical activation with steam. Biomass and Bioenergy, 34, 539-544.