Total phenolic content, antioxidant activity, biochemical composition and physical properties of fish feed pellets supplemented macroalgae (Spirogyra sp.) extract

Main Article Content

Waratit Donsujit
Wannaporn Saetia
Narumon Boonkrachang
Rawinipa Srimoon

Abstract

The objective of this research was to investigate the biochemical and physical properties of fish feed pellets supplemented with crude extract of freshwater green macroalgae (Spirogyra sp.) at different concentrations (0, 5, 10, and 20%). Analyses were conducted to determine the total phenolic content, antioxidant activity, biochemical composition, and physical properties of the formulated pellets. Results revealed that total phenolic content in fish feed pellets increased with higher extract concentrations and showed a statistically significant difference (P<.05). In contrast, the antioxidant activity exhibited a similar increasing trend; however, the differences were not statistically significant (P>.05). The highest values were observed at 20% concentration. Biochemical parameters such as protein, carbohydrate, and fiber content slightly increased, although not significantly (P>.05). In terms of physical properties, water absorption and dust percentage significantly decreased (P<.05) with increasing extract concentration, while water stability, floating ability, and bulk density remained statistically unchanged. These findings indicate that Spirogyra extract possesses potential as a natural additive in aquafeed to enhance nutritional value and support fish health, providing a promising and sustainable approach for commercial fish farming.

Article Details

How to Cite
Donsujit, W., Saetia, W. ., Boonkrachang, N. ., & Srimoon, R. . (2025). Total phenolic content, antioxidant activity, biochemical composition and physical properties of fish feed pellets supplemented macroalgae (Spirogyra sp.) extract. Naresuan Agriculture Journal, 22(2), e0220209. retrieved from https://li01.tci-thaijo.org/index.php/aginujournal/article/view/267824
Section
Research Articles

References

ธีระวัฒน์ รัตนพจน์ เกรียงศักด์ิ เม่งอำพัน ชุติมา ศรีมะเริง รัตนาภรณ์ จันทร์ทิพย์ และดวงพร อมรเลิศพิศาล. (2555). ฤทธิ์ต้านอนุมูลอิสระและผลการเสริมสาหร่ายเตาต่อการเจริญเติบโตของปลานิลในกระชัง.วารสารวิจัยเทคโนโลยีการประมง, 6(2), 23-34.

AOAC. (2023). Official methods of analysis of AOAC International (22nd ed.). AOAC International.

Benedetti, A., Dini, I., Dini, A., Russo, C., & Lombardi, A. (2024). Chemical composition, bioactivities, and applications of Spirulina spp. Foods, 13(2), 123–135.

Dawczynski, C., Schubert, R., & Jahreis, G. (2007). Amino acids, fatty acids, and dietary fiber in edible seaweed products. Food Chemistry, 103(3), 891–899.

Desilva, S. S., & Anderson, T. A. (1995). Fish nutrition in aquaculture. London: Chapman & Hall.

Ganesan, P., S. Chandini, & N. Bhaskar. (2008). Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds. Bioresource Technology, 99, 2717-2723.

Glencross, B. D., Booth, M., & Allan, G. L. (2007). A feed is only as good as its ingredients – a review of ingredient evaluation strategies for aquaculture feeds. Aquaculture Nutrition, 13(1), 17–34.

Gunathilake, T., Akanbi, T. O., Suleria, H. A. R., Nalder, T. D., Francis, D. S., & Barrow, C. J. (2022). Seaweed phenolics as natural antioxidants, aquafeed additives, veterinary treatments and cross-linkers for microencapsulation. Marine Drugs, 20(7), 445.

Heo, S. J., Park, E. J., Lee, K. W., & Jeon, Y. J. (2005). Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresource Technology, 96(14), 1613–1623.

Hu, C. & Kitts, D. D. (2000). Studies on the antioxidant activity of Echinacea root extract. Journal of Agricultural and Food Chemistry, 48, 1466-1472.

Hu, X., Ma, W., Zhang, D., Tian, Z., Yang, Y., Huang, Y., & Hong, Y. (2025). Application of natural antioxidants as feed additives in aquaculture: A review. Biology, 14(1), 87.

Jahazi, M. A., Hoseinifar, S. H., Jafari, V., Hajimoradloo, A. & Van Doan, H. (2020). Dietary supplementation of polyphenols positively affects the innate immune response, oxidative status, and growth performance of common carp (Cyprinus carpio). Aquaculture, 517, 734709.

Junthip, R., Amornlerdpison, D., & Chimsook, T. (2013). Phytochemical screening, antioxidant activity and total phenolic content of Spirogyra spp. In Advanced Materials Research (Vol. 699, pp. 693-697). Trans Tech Publications Ltd.

Kaushik, S. J., & Seiliez, I. (2010). Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquaculture Research, 41(3), 322–332.

Kongkachuichai, R., Charoensiri, R., Yakoh, K., Kringkasemsee, A., & Insung, P. (2010). Nutritional composition of traditional Thai foods. Journal of Food Composition and Analysis, 23(4), 287–297.

Kraugerud, O. F., Jorgensen, H. Y., & Svihus, B. (2011). Physical properties of extruded fish feed with inclusion of different plant (legumes, oilseeds or cereals) meals. Animal Feed Science Technology, 163(2), 244-254.

Lahaye, M., & Robic, A. (2007). Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8(6), 1765–1774.

López-López, S., Nolasco, H., Valdez-Holguín, J. E., & Villarreal-Cavazos, D. (2009). Partial replacement of fish meal by seaweed meal in diets for juvenile Nile tilapia. Journal of Applied Phycology, 21(6), 617–622.

Lovell, R.T. (1981). Laboratory manual for fish feed analysis and fish nutrition studies. United States of America: Auburn university.

Mabrouk, M. M., El-Magd, M. A., El-Baz, A. M., & Omar, H. M. (2024). Arthrospira platensis nanoparticles dietary supplementation improves growth performance and antioxidant status of Nile tilapia. Scientific Reports, 14, 5567.

Nalin, S., Wan, L. K. & Jin, J. Y. (2005). Radical scavenging potential of hydrophilic phlorotanins of Hizikia fusiformis. Algae, 20(1), 69-75.

Olsen, R. E., & Hasan, M. R. (2012). A review of aquaculture feed preparation and feeding practices. FAO Fisheries and Aquaculture Technical Paper, No. 540.

Ortiz, J., Romero, N., Robert, P., Araya, J., López-Hernández, J., Bozzo, C., Navarrete, E., Osorio, A., & Rios, A. (2006). Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99(1), 98–104.

Peerapornpisal, Y. (2015). Freshwater algae in Thailand. (3th ed.). Chiang Mai: Chotana print.Peerapornpisal, Y., Kanjanapothi, D., Taesotikul, T., & Amornlerdpison, D. (2009). Potential of some freshwater algae in Northern Thailand as nutraceutical. Phycologia, 48(4) Suppl, 104-112. (in Thai)

Peerapornpisal, Y., Panyoyai, T. & Amornlerdpison, D. (2012). Antioxidant and anti-inflammatory activities of Spirogyra neglecta (Hassall) Kutzing. KKU Science Journal, 40(1), 228-235. (in Thai)

Rahman, M., Karim, M. A., Hossain, M. M., Sultana, N., & Azim, M. E. (2024). Effects of dietary Spirulina platensis supplementation on growth, antioxidant activity, and immune responses in Pacific white shrimp. Aquaculture Reports, 32, 101234.

Rajauria, G., & Abu-Ghannam, N. (2013). Isolation and partial characterization of bioactive fucoxanthin from Himanthalia elongata brown seaweed: A TLC-based approach. International Journal of Analytical Chemistry, 2013, 802573.

Saleh, E., El-Sayed, A. F. M., Abd El-Gawad, E. A., & Abou-Taleb, A. E. (2023). Effect of incorporation of Spirulina platensis into fish diets on growth performance of Nile tilapia. Aquaculture Reports, 30, 101102.

Sharma, R., K., Gupta, P., N., & Yadav, R. (2024). The effects of dietary Spirulina platensis on oxidative stress and immune gene expression in rainbow trout. Fish & Shellfish Immunology, 152, 108657.

Shimada, K., Fujikawa, K., Yahara, K. & Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40(6), 945-948.

Sun, L., Zhang, J., Lu, X., Zhang. & Zhang, Y. (2011). Evaluation to the antioxidant activity of total flavonoids extract from persimmon (Diospyros kaki L.) leaves. Food and Chemical Toxicology, 49, 2689-2696.

Tacon, A. G. J. (1996). Nutritional studies in crustaceans and the problems of applying research findings to practical farming systems. Aquaculture Nutrition, 2(3), 165–174.

Tipnee, S., Ramaraj, R., & Unpaprom, Y. (2015). Nutritional evaluation of edible freshwater green macroalga Spirogyra varians. Emergent Life Sciences Research, 1(2), 1-7.

Wong, K. H., & Cheung, P. C. K. (2001). Nutritional evaluation of some subtropical red and green seaweeds Part I—proximate composition, mineral contents and protein amino acid profiles. Food Chemistry, 71(4), 475–482.

Wong, S. P., Leong, L. P. & Koh, J. H. W. (2006). Antioxidant activities of aqueous extracts of selected plants. Food Chemistry, 99, 775-783.

Wongsawad, P. & Peerapornpisal, Y. (2015). Morphological and molecular profiling of Spirogyra from northeastern and northern Thailand using inter simple sequence repeat (ISSR) markers. Saudi Journal of Biological Sciences, 22, 382–389.

Yahyavi, M., Hosseini, S. A., Ghasemi, M., Shakouri, M., & Zare, P. (2020). The effect of natural additives on pellet quality and physical properties of extruded feed. Aquaculture Reports, 17, 100354.

Yosboonruang, A., Duangjai, A., Amornlerdpison, D., & Viyoach, J. (2020). Screening for biological activities of Spirogyra neglecta water extract. Walailak Journal of Science and Technology, 17(4), 359-368.