Effects of Biochar Derived from Cacao Pod Husk and Tobacco Stalk on Growth and Yield of Coriander (Coriandrum sativum L.) under Highland Conditions

Main Article Content

Katsirin Sangmanee
Itsara Tangsuwan

Abstract

Effects of biochar derived from cacao pod husk and tobacco stalk on growth and yield of coriander (Coriandrum sativum L.) under highland conditions. This study aimed to investigate the properties of biochar produced from agricultural waste in highland areas and its application for improving sandy loam soil used for coriander cultivation under highland agricultural conditions. The experiment was conducted using a Randomized Complete Block Design (RCBD) with three replications. The treatments included: (1) no fertilizer application (control); (2) chemical fertilizer (21–5–5) at a rate of 20 g per 10 L of water; (3) cocoa-shell biochar at 1 kg/m²; (4) tobacco-plants biochar at 1 kg/m²; (5) biochar compost at 1 kg/m²; and (6) vermicompost at 1 kg/m². The results showed that cocoa-shell biochar contained high levels of essential plant nutrients, including nitrogen, phosphorus, potassium, and calcium. Application of cocoa-shell biochar at a rate of 1 kg/m² resulted in statistically significant increases in coriander yield (2,134.40 g/m²), chlorophyll content (41.58 mg/cm²), and antioxidant activity (70.16%) compared with the control and chemical fertilizer treatments. This treatment also provided the highest economic return, at 156.08 Baht/m². The findings indicate that cocoa-shell biochar can be effectively used as a soil amendment and serve as a guideline for farmers to improve soil quality and crop production in highland areas.


             

Article Details

How to Cite
Sangmanee, K., & Tangsuwan, I. . (2026). Effects of Biochar Derived from Cacao Pod Husk and Tobacco Stalk on Growth and Yield of Coriander (Coriandrum sativum L.) under Highland Conditions. Naresuan Agriculture Journal, 23(1), e0230101. retrieved from https://li01.tci-thaijo.org/index.php/aginujournal/article/view/269305
Section
Research Articles

References

เกศศิรินทร์ แสงมณี. (2563). เอกสารประกอบคำบรรยายวิชาปฐพีวิทยา. คณะวิทยาศาสตร์และเทคโนโลยี, มหาวิทยาลัยราชภัฏพระนคร. กรุงเทพฯ.

ฤทัยรัตน์ โพธิ. (2552). ก๊าซเรือนกระจกกับการเปลี่ยนแปลงสภาพอากาศ: ก๊าซมีเทนในนาข้าว. วารสารวิชาการ วิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครสวรรค์, 1(1), 83-92.

อิสระ ตั้งสุวรรณ์, เกศศิรินทร์ แสงมณี และนิตยา นาคอินทร์. (2564). การศึกษาชนิดและอัตราส่วนของถ่านชีวภาพจากวัสดุเหลือทิ้งทางการเกษตร ต่อสมบัติของดิน การกักเก็บคาร์บอนในดิน การเจริญเติบโต และผลผลิตของผักกาดขาวปลี ที่ปลูกในพื้นที่ตำบลหนองแม่นา อำเภอเขาค้อ จังหวัดเพชรบูรณ์. คณะวิทยาศาสตร์และเทคโนโลยี (รายงานวิจัย). มหาวิทยาลัยราชภัฎเพชรบูรณ์. เพชรบูรณ์.

FAO. (2020). Emissions due to agriculture. Global, regional and country trends 2000–2018. FAOSTAT Analytical Brief Series No 18. Rome.

Fidel, R.B., Laird, D.A., & Parkin, T.B. (2017). Impact of biochar organic and inorganic carbon on soil CO2 and N2O emissions. Journal of Environmental Quality, 46, 505-513.

Glaser, B., Lehmann, J. & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal a review. Biology and Fertility of Soils, 35, 219-230.

Harsono, S.S., Grundman, P., Lau, L.H., Hansen, A., Salleh, M.A.M., Meyer-Aurich, A., Idris, A. & Ghazi, T.I.M. (2013). Energy balances greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches. Resources Conservation and Recycling, 77, 108-115.

Kahl, G., Ingwersen, J., Nutniyom, P., Totrakool, S., Pansombat, K., Thavornyutikarn, P. & Streck, T. (2008). Loss of pesticides from a litchi orchard to an adjacent stream in Northern Thailand. European Journal of Soil Science, 59(1), 71-81.

Lehmann, J., Gaunt, J., & Rondon, M. (2006). Biochar sequestration in terrestrial ecosystems a review. Mitigation and Adaptation Strategies for Global Change, 11, 403-427.

Masulili, A., Utomo, W.H., & Syechfani, M.S. (2010). Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan. Indonesia. Journal of Agricultural Science, 2, 39.

Novotny, E.H., Maia, C.M. B. D. F., Carvalho, M. T. D. M., & Madari, B. (2015). Biochar: Pyrogenic carbon for agricultural use - a critical review. Revista Brasileira de Ciência do Solo, 39(2), 321-344.

Sorensen, C.G., Halberg, N., Oudshoorn, F.W., Petersen, B.M. & Dalgaard, R. (2014). Energy inputs and GHG emissions of tillage systems. Biosystems Engineering, 120, 2-14.

Tubiello, F.N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N. & Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8, DOI 10.1088/1748-9326/8/1/015009.

Tsai, C.H., Tsai, W.T., Liu, S.C. & Lin, Y.Q. (2018). Thermochemical characterization of biochar from cocoa pod husk prepared at low pyrolysis temperature. Biomass Conversion and Biorefinery, 8, 237–243.

Zanli, B.L.G.L., Tang, W. & Chen, J. (2022). N-doped and activated porous biochar derived from cocoa shell for removing norfloxacin from aqueous solution: Performance assessment and mechanism insight. Environmental Research, 214(3), 113951.