ปัจจัยต่อการเจริญของเชื้อรา Trichoderma spp. ที่แยกจากดินปลูกทุเรียนและบทบาทการเป็นปฏิปักษ์ต่อเชื้อราสาเหตุโรครากเน่าโคนเน่าทุเรียน

Main Article Content

กาญจนา ถมจังหรีด
รัติยา พงศ์พิสุทธา
ชัยณรงค์ รัตนกรีฑากุล

บทคัดย่อ

เชื้อรา Trichoderma spp. จำนวน 4 ไอโซเลท ซึ่งมีความแตกต่างในลักษณะโคโลนี แยกมาจากตัวอย่างดินในพื้นที่ปลูกทุเรียนจังหวัดจันทบุรีและชุมพร ด้วยวิธี soil dilution plate ซึ่งได้รับความอนุเคราะห์จากห้องปฏิบัติการราวิทยา ภาควิชาโรคพืช คณะเกษตร กำแพงแสน มหาวิทยาลัยเกษตรศาสตร์ นำมาศึกษาการระบุเชื้อโดยอาศัยลักษณะทางสัณฐานวิทยา ร่วมกับเทคนิคทางอณูชีวโมเลกุล และการวิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ ITS1-5.8S-ITS2 จำแนกเชื้อราได้เป็น 4 สปีชีส์ ได้แก่ Trichoderma. asperellum (DCHA2005), T. harzianum (DCHU1603), T. koningiopsis (DCHA602) และ T. virens (DCHU1101) การทดสอบปัจจัยทางสรีรวิทยาที่มีผลต่อการเจริญของเส้นใยและกิจกรรมของเอนไซม์ไคติเนสและเซลลูเลส พบว่าเชื้อรา Trichoderma ทั้ง 4 สปีชีส์ มีการเจริญและสร้างเส้นใยได้ดีบนอาหาร PDA บ่มที่อุณหภูมิ 25°C มีขนาดเส้นผ่านศูนย์กลางเท่ากับ 8.27, 8.83, 6.70 และ 9.00 ซม. ตามลำดับ นอกจากนี้พบว่าเชื้อรา T. asperellum (DCHA2005), T. harzianum (DCHU1603) และ T. virens (DCHU1101) เจริญได้ดีบนอาหารที่มีค่า pH 5-7 ส่วนเชื้อรา T. koningiopsis (DCHA602) เจริญได้ดีที่ค่า pH 5 เชื้อราทั้ง 4 สปีชีส์ มีการตอบสนองต่ออาหารเลี้ยงเชื้อที่ผสมกลูโคสและเปปโตนซึ่งเป็นแหล่งของคาร์บอนและไนโตรเจนตามลำดับ นอกจากนี้ยังพบว่าเชื้อรา T. harzianum (DCHU1603)สามารถผลิตเอนไซม์ไคติเนส ได้ดีที่สุด โดยมีค่ากิจกรรมของเอนไซม์เท่ากับ 0.3630 มก./มล.ในขณะที่เชื้อรา T. koningiopsis (DCHA602 ผลิตเอนไซม์เซลลูเลสได้มากที่สุด เท่ากับ 19.0272 หน่วย/ลิตร จากการทดสอบความสามารถในการเป็นปฏิปักษ์ของเชื้อรา Trichoderma จำนวน 4 สปีชีส์ กับเชื้อราสาเหตุโรครากเน่าโคนเน่าของทุเรียน จำนวน 6 สปีชีส์ ด้วยวิธี dual culture ผลการทดลองพบว่าเชื้อรา T. virens (DCHU1101) สามารถควบคุมการเจริญของเส้นใยเชื้อรา P. inflatum (DCHU301) และ P. cucurbitacearum (DCHU1003) ได้ โดยพบการยับยั้งการเจริญของเส้นใยเท่ากับ 44.81 และ 41.85% ตามลำดับ ในขณะที่เชื้อรา T. harzianum (DCHU1603) ยับยั้งเชื้อรา P. inflatum ได้ 41.11% อย่างไรก็ตามเชื้อรา Trichoderma ทั้ง 4 สปีชีส์ ที่นำมาศึกษาด้วยวิธีนี้ไม่สามารถควบคุมเชื้อรา Phytophthora palmivora (DTRA212) ได้แต่อย่างใด

Article Details

บท
บทความวิจัย (research article)

References

กาญจนา มณีศรี. 2557. การคัดเลือกเชื้อราเอนโดไฟท์ Trichoderma spp. จากเนื้อไม้ยางพารา (Hevea brasiliensis Mull Arg) สำหรับควบคุมเชื้อ Phytophthora palmivora (Butler) และ P. botryose (Chee) โดยชีววิธี. วิทยานิพนธ์ปริญญาเอก, มหาวิทยาลัยสงขลานครินทร์.

จิระเดช แจ่มสว่าง. 2563. ไตรโคเดอร์มา: เชื้อราปฏิปักษ์ควบคุมโรคพืช. เพชรเกษมการพิมพ์, นครปฐม.

โสภา จอมอิ่น, อังสนา อัครพิศาล, ชาตรี สิทธิกุล และชาญณรงค์ ดวงสอาด. 2564. ประสิทธิภาพของเชื้อราไตรโคเดอร์มาที่รวบรวมได้จากจังหวัดเชียงใหม่ ในการควบคุมเชื้อรา Sclerotium rolfsii. วารสารเกษตร. 25(1): 21-29.

สำนักงานเศรษฐกิจการเกษตร. 2564. การผลิตทุเรียนย้อนหลัง 5 ปีล่าสุด. แหล่งข้อมูล: http://mis-app.oae.go.th/product/ทุเรียน. ค้นเมื่อ 31 มกราคม 2565.

Adeleke, B.S., A.S. Ayangbenro, and O.O. Babalola. 2021. Genomic analysis of endophytic Bacillus cereus T4S and its plant growth-promoting traits. Plants. 10: 1776.

Ayoubi, N., D. Zafari, and M. Mirabolfathy. 2012. Combination of Trichoderma species and Bradyrhizobium japonicum in control of Phytophthora sojae and soybean growth. Journal of Crop Protection. 1(1): 0-0.

Bae, S.-J., T.K. Mohanta, J.Y. Chung, M. Ryu, G. Park, S. Shim, H. Seo, D.-W. Bae, I. Bae, J.-J. Kim, and H. Bae. 2016. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biological Control. 92: 128-138.

Becker, E., N. Rajakulendran, and S. Shamoun. 2011. Trichoderma spp.: antagonistic effects to Phytophthora ramorum growth and spore germination in vitro. Proceedings of the Plant Canada, Halifax, Nova Scotia: Plant Canada. 34: 173-174.

Benítez, T., A.M. Rincón, M.C. Limón, and A.C. Codon. 2004. Biocontrol mechanisms of Trichoderma strains. International microbiology. 7(4): 249-260.

Bruehl, G.W. 1997. Systems and mechanisms of residue possession by pioneer fungal colonists. pp. 77-83 In Bruehl, G. W. (ed.) Biology and control of soil-borne plant pathogems. The American Phytopathological Society, St. Paul's University.

Bunbury-Blanchette, A.L., and A.K. Walker. 2019. Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biological Control. 130: 127-135.

Carsolio, C., A. Gutiérrez, B. Jiménez, M. Van Montagu, and A. Herrera-Estrella. 1994. Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proceedings of the National Academy of Sciences. 91(23): 10903-10907.

Cuadros-Orellana, S., L.R. Leite, A. Smith, J.D. Medeiros, F. Badotti, P.L. Fonseca, and A. Góes-Neto. 2013. Assessment of fungal diversity in the environment using metagenomics: a decade in review. Fungal Genomics and Biology. 3(2): 1.

Danielson, R.M., and C.B. Davey. 1973a. Carbon and nitrogen nutrition of Trichoderma. Soil Biology and Biochemistry. 5(5): 505-515.

Danielson, R.M., and C.B. Davey. 1973b. Effects of nutrients and acidity on phialospore germination of Trichoderma in vitro. Soil Biology and Biochemistry. 5(5): 517-524.

Davies, J.S., and D.W.S. Westlake. 1979. Crude oil utilization by fungi. Canadian Journal of Microbiology. 25(2): 146-156.

Etebarian, H.R., E.S. Scott, and T.J. Wicks. 2000. Trichoderma harzianum T39 and T. virens DAR 74290 as potential biological control agents for Phytophthora erythroseptica. European Journal of Plant Pathology. 106(4): 329-337.

Garo, E., C.M. Starks, P.R. Jensen, W. Fenical, E. Lobkovsky, and J. Clardy. 2003. Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. Journal of Natural Products. 66: 423-426.

Ghazanfar, M.U., W. Raza, and M.I. Qamar. 2018. Trichoderma as potential biocontrol agent, its exploitation in agriculture: A review. Plant Protect. 2(3): 109-135.

Haouhach, S., N. Karkachi, B. Oguiba, A. Sidaoui, I. Chamorro, M. Kihal, and E. Monte. 2020. Three new reports of Trichoderma in Algeria: T. atrobrunneum (South) T. longibrachiatum (South), and T. afroharzianum (Northwest). Microorganisms. 8(10): 1455.

Harman, G.E., M. Lorito, and J.M. Lynch. 2004. Uses of Trichoderma spp. to remediate soil and water pollution. Advances in Applied Microbiology. 56: 313-330.

Howell, C.R. 2006. Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology. 96(2): 178-180.

Igiehon, N.O., O.O. Babalola, X. Cheseto, and B. Torto. 2021. Effects of rhizobia and arbuscular mycorrhizal fungi on yield, size distribution and fatty acid of soybean seeds grown under drought stress. Microbiological Research. 242: 126640.

Intana, W. 2003. Selection and development of Trichoderma spp. for high glucanase, antifungal metabolites producing and plant growth promoting isolates for biological control of cucumber damping-off caused by Pythium spp. Ph.D. Dissertation. Kasetsart University, Bangkok.

Khairum, A., O. Poolsawat, P. Pornbungkerd, A. Tharapreuksapong, S. Wongkaew, and P. Tantasawat. 2018. Effects of culture media on Phytophthora palmivora growth, a-elicitin production and toxicity to Dendrobium. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 46(2): 630-638.

Kim, D.J., J.M. Baek, P. Uribe, C.M. Kenerley, and D.R. Cook. 2002. Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Current genetics. 40(6): 374-384.

Kullnig-Gradinger, C.M., G. Szakacs, and C.P. Kubicek. 2002. Phylogeny and evolution of the genus Trichoderma: A multigene approach. Mycological Research. 106: 757-767.

Lieckfeldt, E., G.J. Samuels, T. Börner, and W. Gams. 1998. Neotypification of Trichiderma koningii and its Hypocrea muroicina teleomorph. Canadian Journal of Botany. 76: 1507-1522.

Mayo-Prieto, S., M. Campelo, A. Lorenzana, A. Rodríguez-González, B. Reinoso, S. Gutiérrez, and P.J.E.J.o.P.P. Casquero. 2020. Antifungal activity and bean growth promotion of Trichoderma strains isolated from seed vs soil. European Journal of Plant Pathology. 158(4): 817-828.

McIntyre, M., J. Nielsen, J. Arnau, H. van der Brink, K. Hansen, and S. Madrid. 2004. Proceedings of the 7th European Conference on Fungal Genetics. Copenhagen, Denmark.

Mistry, H., and H. Bariya. 2022. Isolation and Identification of Trichoderma spp. from Different Agricultural Samples. In: Amaresan N., P. Patel, and D. Amin. (eds.) Practical Handbook on Agricultural Microbiology. Springer Protocols Handbooks. Humana, New York.

Mukherjee, P.K., B.A. Horwitz, and C.M. Kenerley. 2012. Secondary metabolism in Trichoderma a genomic perspective. Microbiology. 158(1): 35-45.

Nelson, N. 1994. A photometric adaptation of the somogyi method for the determination of glucose. Journal of Biological Chemistry. 153: 375-380.

Omero, C., J. Inbar, V. Rocha-Ramirez, A. Herrera-Estrella, I. Chet, and B.A. Horwitz. 1999. G protein activators and cAMP promote mycoparasitic behaviour in Trichoderma harzianum. Mycological Research. 103: 1637–1642.

Oskiera, M., M. Szczech, and G. Bartoszewski. 2015. Molecular identification of Trichoderma strains collected to develop plant growth-promoting and biocontrol agents. Journal of Horticultural Research. 23(1): 75-86.

Osorio-HernÃ, E., V. Conde-MartÃnez, A.C. Michel-Aceves, J.A. Lopez-Santillan, and J.A. Torres-Castillo. 2016. In vitro activities of Trichoderma species against Phytophthora parasitica and Fusarium oxysporum. African Journal of Microbiology Research. 10(15): 521-527.

Polizzi, V., A. Adams, A.M. Picco, E. Adriaens, J. Lenoir, C. Van Peteghem, S. De Saeger, and N. De Kimpe. 2011. Influence of environmental conditions on production of volatiles by Trichoderma atroviride in relation with the sick building syndrome. Building and Environment. 46: 945-954.

Pongpisutta, R., W. Winyarat, and C. Rattanakreetakul. 2013. RFLP identification of Colletotrichum species isolated from chilli in Thailand. Acta Horticulturae. 973: 181-186.

Rehner, S.A., and G.J. Samuels. 1994. Taxonomy and phylogeny of Gliocladium analyzed by large subunit rDNA sequences. Mycological Research. 98: 625-634.

Samuel, G.J., and P.K. Hebbar. 2015. Trichoderma Identification and Agricultural Applications. The APS Press, Minnesota, U.S.A.

Somogyi, M. 1952. Notes on sugar determination. Journal of Biological Chemistry. 195: 19-23.

Sood, M., D. Kapoor, V. Kumar, M.S. Sheteiwy, M. Ramakrishnan, M. Landi, F. Araniti, and A. Sharma. 2020. Trichoderma: the “secrets” of a multitalented biocontrol agent. Plants. 9(6): 762.

Sun Y., Y. Qian, J. Zhang, Y. Wang, X. Li, W. Zhang, L. Wang, H. Liu, and Y. Zhong. 2021. Extracellular protease production regulated by nitrogen and carbon sources in Trichoderma reesei. Journal of Basic Microbiology. 61(2): 122-132.

Suwan, S., M. Isobe, S. Kanokmedhakul, N. Lourit, K. Kanokmedhakul, K. Soytong, and K. Koga. 2000. Elucidation of high micro-heterogencity of an acidic-neutral trichotoxin mixture from Trichoderma harzianum by electrospray ionization quadrupole time-of-flight mass spectrometry. Journal of Mass Spectrometry. 35: 1438-1451.

Tang, W., H. Yang, and M. Ryder. 2001. Research and application of Trichoderma spp. in biological control of plant pathogens. In: Pointing, S.B., and K.D. Hyde (eds.) bio-exploitation of filamentous fungi. Fungal Diversity Research Series. 6: 403-435.

Thrane, U., S.B. Poulsen, H.I. Nirenberg, and E. Lieckfeldt. 2001. Identification of Trichoderma strains by image analysis of HPLC chromatograms. FEMS Microbiology Letters. 203: 249-255.

Viterbo, A., O. Ramot, L. Chernin, and I. Chet. 2002. Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek. 81(1): 549-556.

Wardle, D.A., D. Parkinson, and J.E. Waller. 1993. Interspecific competitive interactions between pairs of fungal species in natural substrates. Oecologia. 94(2): 165-172.

Webster, J., and R.W.S. Weber. 2007. Introduction to Fungi. Cambridge, Cambridge University Press, UK. 841.

Weindling, R. 1934. Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathology. 24: 1153-1179.

Whipps, J.M. 2001. Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany. 52: 487-511.

White, T.J., T. Bruns, S.J.W.T. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. 18(1): 315-322.