Effect of dietary cysteamine hydrochloride and guanidinoacetate supplementation on growth performance and carcass traits in finishing pigs
Main Article Content
Abstract
Cysteamine hydrochloride and guanidinoacetate are biological agents which play a physiological response role to promote growth in animals. The objective of this study was to investigate the effect of cysteamine hydrochloride and guanidinoacetate supplementation on growth performance and carcass traits in finishing pigs.
A total of 162 pigs (61.91±4.88 kg BW) were divided into three groups by randomized complete block design (RCBD). Each group of pigs was fed 1 of 3 diets; group 1: basal diet (control diet), group 2: basal diet supplemented with cysteamine hydrochloride 700 g/ton of feed, and group 3: basal diet supplemented with guanidinoacetate 1,000 g/ton of feed for 74 days. The results showed that pigs fed diets supplemented with cysteamine hydrochloride and guanidinoacetate had higher final body weight, body weight gain, and average daily gain. However, feed conversion ratio (P<0.05) decreased when compared with pigs fed control diet. In addition, supplementation of cysteamine hydrochloride and guanidinoacetate in pig diet increased live body weight, percentages of loin, and tenderloin (P<0.05). The pigs fed diet supplemented with cysteamine hydrochloride had lower back fat thickness (P<0.05), while percentages of collar and lean increased when compared with the other groups (P<0.05). In conclusion, supplementation with cysteamine hydrochloride and guanidinoacetate potentially improves growth performance and carcass traits with no effect on feed cost per gain in finishing pigs.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
จุฑารัตน์ เศรษฐกุล. 2556. วิธีการวัดคุณภาพซากสุกร. น.12. ใน: ประชุมวิชาการวิทยาศาสตร์และเทคโนโลยีเนื้อสัตว์ ครั้งที่ 4 เรื่องการเพิ่มผลผลิตและคุณภาพของเนื้อสุกร: เทคโนโลยีการตัดแต่ง 19 กรกฎาคม 2556. โรงแรมรามาการ์เดน, กรุงเทพฯ.
วรรณพร ทะพิงค์แก. 2560. อาหารและการให้อาหารสัตว์ (Feeds and Feeding). ศูนย์บริหารงานวิจัย คณะเกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่, เชียงใหม่.
อุทัย คันโธ. 2559. อาหารสุกรและสัตว์ปีกเชิงประยุกต์. บริษัท บีพีเค พริ้นติ้ง จำกัด, กรุงเทพฯ.
AOAC. 1990. Official Methods of Analysis, 15th ed. Association of Official Analytical Chemists, Washington DC.
Balsom, P.D., K. Soderlund, B. Sjodin, and B. Ekblom. 1995. Skeletal muscle metabolism during short duration high-intensity exercise: influence of creatine supplementation. Acta Physiologica Scandinavica. 154: 303-310.
Canada Pork International. 2014. The official Canadian Pork Quality Standards (CPQS) for meat colour, fat colour and marbling (intramuscular fat). the Canadian Centre for Swine Improvement Agriculture and Agri-Food, Canada.
Casey, A., D. Constantin-Teodosiu, S. Howell, E. Hultman, and P.L. Greenhaff. 1996. Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. American Journal of Physiology-Endocrinology and Metabolism. 271: E31-E37.
Coleman, M.E., L. Russell, and T.D. Etherton. 1994. Porcine somatotropin (pST) increases IGF-I mRNA abundance in liver and subcutaneous adipose tissue but not in skeletal muscle of growing pigs. Journal of Animal Science. 72: 918-924.
Dunshea, F.R. 2007. Porcine somatotropin and cysteamine hydrochloride improve growth performance and reduce back fat in finisher gilts. Australian Journal of Experimental Agriculture. 47: 796-800.
Farshidfar, F., M.A. Pinder, and S.B. Myrie. 2017. Creatine supplementation and skeletal muscle metabolism for building muscle mass-Review of the potential mechanisms of action. Current Protein and Peptide Science. 18: 1273-1287.
Hanbunchong, A., and A. Sinchermsiri. 1989. Feed analysis and evaluation. Kasetsart University, Bangkok (in Thai).
Jayaraman, B., L. Kinh, L.T.T. Huyen, D. Vinh, M.E. Carpena, M. Rademacher, and G. Channarayapatna. 2018. Supplementation of guanidinoacetic acid to pig diets: Effects on performance, carcass characteristics and meat quality. Journal of Animal Science. 96: 2332-2341.
Lemme, A., J. Ringel, A. Sterk, and J.F. Young. 2007. Supplemental guanidinoacetic acid affects energy metabolism of broilers. PP. 26-30. In: Proceedings of the 16th European Symposium on Poultry Nutrition. French Branch of WPSA, Strasbourg, France.
Liu, G., Z. Wang, D. Wu, A. Zhou, and G. Liu. 2009. Effects of dietary cysteamine supplementation on growth performance and whole-body protein turnover in finishing pigs. Livestock Science. 122: 86-89.
Liu, G., Y. Wei, Z. Wang, D. Wu, and A. Zhou. 2008. Effects of dietary supplementation with cysteamine on growth hormone receptor and insulin-like growth factor system in finishing pigs. Journal of Agricultural and Food Chemistry. 56: 5422-5427.
Liu, Y., J.L. Li, Y.J. Li, T. Gao, L. Zhang, F. Gao, and G.H. Zhou. 2015. Effects of dietary supplementation of guanidinoacetic acid and combination of guanidinoacetic acid and betaine on postmortem glycolysis and meat quality of finishing pigs. Animal Feed Science and Technology. 205: 82–89.
Lu, Y., T. Zou, Z. Wang, J. Yang, L. Li, X. Guo, Q. He, L. Chen, and J. You. 2020. Dietary guanidinoacetic acid improves the growth performance and skeletal muscle development of finishing pigs through changing myogenic gene expression and myofibre characteristics. Journal of Animal Physiology and Animal Nutrition. 104: 1875-1883.
Machlin, L.J. 1972. Effect of porcine growth hormone on growth and carcass composition of the pig. Journal of Animal Science. 35: 794-800.
Melmed, S., S. Yamashita, H. Yamasaki, J. Fagin, H. Namba, H. Yamamoto, M. Webe, S. Morita, J. Webster, and
D. Prager. 1996. IGF-I receptor signalling: lessons from the somatotroph. Recent Progress in Hormone Research. 51: 189-215.
Michiels, J., L. Maertens, J. Buyse, A. Lemme, M. Rademacher, N.A. Dierick, and S.d. Smet. 2012. Supplementation of guanidinoacetic acid to broiler diets: Effects on performance, carcass characteristics, meat quality and energy metabolism. Poultry Science. 91: 402-412.
NRC. 1998. Nutrient Requirements of Swine. Subcommittee on Swine Nutrition, Committee on Animal Nutrition, National Research Council ,Washington, D.C.
Sacheck, J.M., A. Ohtsuka, S.C. McLary, and A.L. Goldberg. 2004. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. American Journal of Physiology-Endocrinology and Metabolism. 287: 591–601.
Steel, R.G.D., and J.H. Torrie. 1980. Principles and Procedures of Statistics: A Biometrical Approach.: 2nd ed. McGraw-Hill, New York.
Tao, W.J., L.J. Liu, H. Li, X. Pei, G. Wang, Z.P. Xiao, R. Yu, Z.F. Li, and M.Q. Wang. 2020. Effects of coated cysteamine on growth performance, carcass characteristics, meat quality and lipid metabolism in finishing pigs. Animal Feed Science and Technology. 263: 114480. DOI: 10.1016/j.anifeedsci.2020.114480.
Tsigos, C., and G.P. Chrousos. 2002. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research. 53: 865-871.
Wyss, M., and R. Kaddurah-Daouk. 2000. Creatine and creatinine metabolism. Physiological Reviews. 80: 1107-1213.
Zhou, P., L. Zhang, J. Li, Y. Luo, B. Zhang, S. Xing, Y. Zhu, H. Sun, F. Gao, and G. Zhou. 2015. Effects of dietary crude protein levels and cysteamine supplementation on protein synthetic and degradative signaling in skeletal muscle of finishing pigs. PLoS ONE. 10(9): e0139393. DOI: 10.1371/journal.pone.0139393.