The effect of non-thermal plasma on DNA methylation-related gene expression in crossbred Pradu Hang Dam chicks

Main Article Content

Siripatsorn Thinpa
Worasak Kaewkong
Pakpoom Subsoontorn
Choncharoen Sawangrat
Dheerawan Boonyawan
Tiranun Srikanchai
Apichaya Sakulthai
Pairat Srichana
Thitima Pechrkong
Rangsun Charoensook

Abstract

The aim of this study was to investigate the effect of Cold plasma on DNA methylation-related gene expression in crossbred Thai native chickens. Fourth day-incubation fertilized eggs, which is the optimal stage for the beginning of embryo development were exposed with cold plasma. Incubated eggs were exposed for 10, 20 and 30 seconds, respectively, compared to the control group. Expression of DNA methylation-related genes (DNMT1, DNMT3a and DNMT3b) was determined in liver tissues derived from 32 a day-old chick (n=8 per group) by real-time PCR techniques. Significant downregulation of DNMT3b gene was found in all plasma-treat groups (P=0.0014, P<0.0001, P=0.003, respectively). This study demonstrated that cold plasma technology had affected on DNA methylation-related gene expression, which affects the development of the embryo and the regulation of the expression of other genes related to development of the chicken embryo. This green technology will be saving as the further development strategy for agricultural benefits in Thailand.

Article Details

How to Cite
Thinpa, S. ., Kaewkong, W. ., Subsoontorn, P. ., Sawangrat, C. ., Boonyawan, D. ., Srikanchai, T. ., Sakulthai, A., Srichana, P. ., Pechrkong, T. ., & Charoensook, R. . (2023). The effect of non-thermal plasma on DNA methylation-related gene expression in crossbred Pradu Hang Dam chicks . Khon Kaen Agriculture Journal, 51(5), 856–866. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/256167
Section
บทความวิจัย (research article)

References

ธีรวรรณ บุญญวรรณ และหมุดตอเล็บ หนิสอ. 2562. พลาสมาเย็น (ว่าที่) เทคโนโลยีเพื่อเกษตรสีเขียวและอาหารปลอดภัย. แหล่งข้อมูล: http://www.thaiphysoc.org/article/166/. ค้นเมื่อ 30 พฤศจิกายน 2563.

ธิติมา เพ็ชรคง. 2560. ความหลากหลายทางพันธุกรรม การแสดองออกของยีนสมรรถนการผลิต และคุณภาพเนื้อของไก่พื้นเมืองที่ตอบสนองต่อระดับโปรตีน. วิทยานิพนธ์ ปริญญาวิทยาศาสตร มหาบัณฑิต มหาวิทยาลัยนเรศวร. พิษณุโลก.

Baylin, B. S., M. Esteller, R. M. Rountree, E. K. Bachman, K. Schuebel, and G. J. Herman. 2001. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Human Molecular Genetics. 10: 687–692.

Beacon, H. T., and R. J. Davie. 2020. The chicken model organism for epigenomic research. Genome. 64: 476-489.

Bird, P. A. 1980. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Research. 8: 1499–1504.

Cerda, S., and S. A. Weitzman. 1997. Influence of oxygen radical injury on DNA methylation. Mutation Research. 386: 141–152.

Davies, K. J. 1995. Oxidative stress: The paradox of aerobic life. Biochemical Society Symposia. 61: 1–13.

Egger, G., S. Jeong, G. S. Escobar, C.C. Cortez, W. H. T. Li, Y. Saito, B. C. Yoo, A. P. Jones, and G. Liang. 2006. Identification of DNMT1 (DNA methyltransferase 1) hypomorphs in somatic knockouts suggests an essential role for DNMT1 in cell survival. Proceedings of the National Academy of Sciences of the United States of America. 103(38): 14080–14085.

Fernandez, S. C., L.C. Lorda-Diez, M. J. Hurlé, and A. J. Montero. 2020. The methylation status of the embryonic limb skeletal progenitors determines their cell fate in chicken. Communications Biology. 283.

Ge, Y. Z., M. T. Pu, H. Gowher, H. P. Wu, J. P. Ding, A. Jeltsch, and G. L. Xu. 2004. Chromatin targeting of de novo DNA methyltransferases by the PWWP domain. Journal of Biological Chemistry. 279: 25447–25454.

Goldberg, A. D., C. D. Allis, and E. Bernstein. 2007. Epigenetics, a landscape takes shape. Cell. 128: 635–638.

Hermann, A., R. Goyal, and A. Jeltsch. 2004. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. Journal of Biological Chemistry. 279: 48350–48359.

Hu, B. L., B. Lucio, and A. K. Schat. 1993. Abrogation of age-related resistance to chicken infectious anemia by embryonal bursectomy. Avian Diseases. 37: 157–169.

Jaturasitha, S., T. Srikanchai, M. Kreuzer, and M. Wicke. 2008. Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (Black-boned and Thai native) and imported extensive breeds (Bresse and Rhode Island Red). Poultry Science. 87: 160-169.

Jiang, B., J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, and Q. Xue. 2014. Review on electrical discharge plasma technology for wastewater remediation. Chemical Engineering Journal. 236: 348-368.

Jin, B., Y. Li, and K. Robertson. 2011. DNA methylation: duperior or dubordinate in the epigenetic hierarchy. Genes Cancer. 6: 607–617.

Kalghatgi, S., G. Friedman, A. Fridman, and A.M. Clyne. 2010. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Annals of Biomedical Engineering. 38: 748–757.

Kalghatgi, S., C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and A.C. Jane. 2011. Effects of non-thermal plasma on mammalian cells. PLoS One. 2011: 16270.

Kaushik, N. K., N. Kaushik, D. Park, and E. H. Choi. 2014. Altered antioxidant system stimulates dielectric barrier discharge plasma-induced cell death for solid tumor cell treatment. PLoS One. 9: 103349.

Kavlock, J. R., and P.G. Daston. 1997. Drug toxicity in embryonic development I: advances in understanding mechanisms of birth defects: morphogenesis and processes at risk. Springer.

Kita, K., K. Nagao, and J. Okumura. 2005. Nutritional and tissue specificity of IGF-I and IGFBP-2 gene expression in growing chickens. Asian-Australasian Journal of Animal Sciences. 18: 747–754.

Livak, L. K., and D.T. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods. 25: 402-408.

Li, E. 2002. Chromatin modification and epigenetic reprogramming in mammalian development. Nature Reviews Genetics. 3: 662-73.

Li, Q., N. Li, X. Hu, J. Li, Z. Du, L. Chen, G. Yin, J. Duan, H. Zhang, Y. Zhao, J. Wang, and N. Li. 2011. Genome-wide mapping of DNA methylation in chicken. PLoS One.

Li, S., Y. Zhu, L. Zhi, X. Han, J. Shen, Y. Liu, J. Yao, and X. Yang. 2016. DNA methylation variation trends during the embryonic development of chicken. PLoS One.

Lyko, F. 2018. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nature Reviews Genetics. 19: 81–92.

Maeder, L. M., F.J. Angstman, E. M. Richardson, L. S. Linder, M. V. Cascio, Q. S. Tsai, H.Q. Ho, D.J. Sander, D. Reyon, E. B. Bernstein, F. J. Costello, F. M. Wilkinson, and K. J. Joung. 2013. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nature biotechnology. 31: 1137–1142.

Moore, L., T. Le, and G. Fan. 2013. DNA methylation and its basic function. Neuropsychopharmacology. 38: 23–38.

Okano, K., D. Bell, D. Haber, and E. Li. 1999. DNA Methyl transferases Dnmt3a and Dnmt3b are essential for De Novo methylation and mammalian development. Cell. 99: 247-257.

Patten, B.M. 1898. The Early Embryology of the Chick. Philadelphia: P. Blakiston’s Son and Co.

Phillips, T. 2008. The role of methylation in gene expression. Nature Education. 1: 116.

Riggs, D. A., and Z. Xiong. 2004. Methylation and epigenetic fidelity. Proc Natl Acad Sci U S A. 101: 4-5.

Sakulthai, A., C. Sawangrat, D. Pichpol, J. Kongkapan, T. Srikanchai, R. Charoensook, P. Sojithamporn, and D. Boonyawan. 2023. Improving the efficiency of crossbred Pradu Hang Dam chicken production for meat consumption using cold plasma technology on eggs. Scientific Reports. 13: 2386.

Takeshima, H., I. Suetake, H. Shimahara, K. Ura, S. Tate, and S. Tajima. 2006. Distinct DNA methylation activity of Dnmt3a and Dnmt3b towards naked and nucleosomal DNA. Journal of Biological Chemistry. 139: 503-15.

Uysal, F., S. Ozturk, and O. Akkoyunlu. 2017. DNMT1, DNMT3A and DNMT3B proteins are differently expressed in mouse oocytes and early embryos. Journal of Molecular Histology. 48: 417–426.

Xie, S., Z. Wang, M. Okano, M. Nogami, Y. Li, W. He, K. Okumura, and E. Li. 1999. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene. 236: 87-95.

Yen, W. R., M. P. Vertino, D. B. Nelkin, J.J. Yu, W. el-Deiry, A. Cumaraswamy, G.G. Lennonet, J.B. Trask, P. Celano, and B. S. Baylin. 1992. Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Research. 20: 2287–2291.

Zhang, J. J., O. J. Jo, L. D. Huynh, K. R. Mongre, M. Ghosh, K.A. Singh, B. S. Lee, S. Y. Mok, P. Hyuk, and K. D. Jeong. 2017. Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes. Scientific Reports. 7: 41917.

Zhang, J. J., Z. X. Wang, T. Kwon, L. D. Huynh, N. Chandimali, N. Kim, Y.T. Kang, M. Ghosh, M. Gera, B. S. Lee, J.S. Lee, S.W. Lee, B.S. Kim, S.Y. Mok, and K.D. Jeong. 2018. Innovative approach of non-thermal plasma application for improving the growth rate in chickens. International Journal of Molecular Sciences. 19: 2301.

Zhang, J. J., L. H. Do, N. Chandimali, B. S. Lee, S. Y. Mok, N. Kim, B. S. Kim, T. Kwon, and K. D. Jeong. 2018. Non-thermal plasma treatment improves chicken sperm motility via the regulation of demethylation levels. Scientific Reports. 8: 7576.

Zusman, I., and A. Ornoy. 1990. Embryonic resistance to chemical and physical factors: manifestation, mechanism, role in reproduction and in adaptation to ecology. Biological reviews of the Cambridge Philosophical Society. 65: 1–18.