The effects of fermenting pineapple peels (Ananas comosus L. Merr) with Loog-pang at various ensiled times on the nutrient content and pH

Main Article Content

Henggi Apedro
Sajee Kunhareang
Yupin Phasuk

บทคัดย่อ

The research herein aimed to compare the effects of supplementing with Loog-pang from different fermentation methods of pineapple peel (Ananas comosus L. Merr) on nutrient contents and pH levels. We investigated both fresh and dry pineapple peel with 0% or 3% Loog-pang. The study  was conducted in a 2×2×4 factorial arrangement in a completely randomized design (CRD). Factor A identified the type of pineapple peel; fresh or dried (for 48 hours). Factor B was the level of Loog-pang used in the fermentation process, at either 0% or 3%. Factor C determined the length of the fermentation process at 0, 3, 6, or 9 days. The treatments were replicated two times each, and the parameters were evaluated: nutrient contents [dry matter (DM); ash, crude fiber (CF); crude protein (CP); ether extract (EE)]; and pH. The results showed no significant differences in the interaction of fermented pineapple peel with Loog-pang at different fermentation times in crude protein, crude fiber, ether extract, or pH (P>0.01); but showed significant differences in dry matter content and ash (P<0.01). We may, therefore, conclude that nine days of fermentation with fresh pineapple peel and 3% Loog-pang will provide the highest crude protein content, while reducing the crude fiber value at a suitable pH. In addition to the type of pineapple peel, both the Loog-pang supplement and incubation time further impacted changes in nutrient levels during the fermentation process.

Article Details

บท
บทความวิจัย (research article)
Author Biographies

Sajee Kunhareang, Department of Animal Science, Faculty of Agriculture, Khon Kaen University

A lecturer in Departement of Animal Science, Agriculture faculty of Khon Kaen University, Khon Kaen Thailand

Yupin Phasuk, Department of Animal Science, Faculty of Agriculture, Khon Kaen University

A lecturer ini department of animal science, Khon Kaen University, Khon Kaen Thailand

References

Adrizal, Y. H., R. Amizar, and E. M. Maria. 2017. Evaluation of pineapple [Ananas comosus (L.) Merr] waste fermented using different local microorganism solutions as poultry feed. Pakistan Journal of Nutrition. 16: 84-89.

Ahmed, S., G. Mustafa, M. Arshad, and M. I. Rajoka. 2017. Fungal biomass protein production from Trichoderma harzianum using rice polishing. Biomed Research International. 2017: 1–9.

Ali, H. Z., R. S. Mohammed, and H. M. Aboud. 2015. Efficiency of organic matter levels and bio fungus Trichoderma harzianum on the cucumber plant. Journal of Agriculture and Veterinary Science. 8(6): 28–34.

AOAC. 2000. Official Methods of Analysis. 17th Edition, The Association of Official Analytical Chemists, Gaithersburg, MD, USA.

AOAC. 2005. Official method of analysis. 18th Edition, Association of Officiating Analytical Chemists, Washington DC.

Baker-Austin, C., and M. Dopson. 2007. Life in acid: pH homeostasis in acidophiles. Trends in Microbiology. 15(4): 165-171.

Bonilla, L., M. Adriana, M. R. Rodríguez-Jasso, R. Belmares, M. Claudia, López-Badillo, R. G. Araújo, N. C. Aguilar, M. L. Chávez, M. A. Aguilar, and H. A. Ruiz. 2022. Fungal Proteins from Sargassum spp. Using Solid-State Fermentation as a Green Bioprocess Strategy. Molecules. 27(12): 3887.

Bulkaini, I. G. N. G. B., I. K. Sumadi, and I. N. T. Ariana. 2021. Nutritional profile of Pineapple skin fermented by yeast culture (Saccharomyces spp.) and the ability to Inhibit the growth of Escherichia coli bacteria. Annals of the Romanian Society for Cell Biology. 25(5): 4587–4595.

Central Bureau of Statistics of Indonesia. 2021. Production of Fruits 2021. BPS - Statistics Indonesia. Available: https://www.bps.go.id/indicator/55/62/1/produksi-tanaman-buah-buahan.html. Accessed Sept. 14, 2022.

Correia, R. T. P., P. McCue, M. M. A. Magalhaes., G. R. Macedo, and K. Shetty. 2004. Production of Phenolic Antioxidants by The Solid-State Bioconversion of Pineapple Waste Mixed with Soy Flour Using Rhizopus Oligosporus. Process Biochemistry. 39: 2167-2172.

Daher, C., J. Abou-Khalil, and G. Baroody. 2005. Effect of acute and chronic grapefruit, orange and pineapple juice intake on blood lipid profile in normolipidemic rat. Medical Science Monitor. 11: 465-472.

Duru, C.C., and N. U. Uma. 2003. Protein enrichment of solid waste cocoyam (Xanthosoma sagittifolium (L.) Schott) cormel processing using Aspergillus oryzae obtained from cormel flour. African Journal of Biotechnology. 2(8): 228-232.

Ezekiel, O. O., O. C. Aworh, H. P. Blaschek, and T. C. Ezeji. 2010. Protein enrichment of cassava peel by submerged fermentation with Trichoderma viride (ATCC 36316). African Journal of Biotechnology. 9 (2): 187–94.

Hajar, N., S. Zainal., O. Atikah, and T. Z. M. Tengku Elida. 2012. Optimization of ethanol fermentation from pineapple peel extract using response surface methodology (RSM). World Academy of Sciences. International Journal of Nutrition and Food Engineering. 72: 641-647.

Horikoshi, K. 1999. Alkaliphiles: some applications of their products for biotechnology. Microbiology and Molecular Biology Reviews. 63(4): 735-750.

Howard, R. L., E. Abotsi, E. L. Jansenvan, and S. Howard. 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology. 2(12): 602-619.

Ibrahim, W., R. Mutia, and N. Nurhayati. 2015. Use of fermented pineapple peel in the ration containing medicinal weeds on fat and cholesterol of broiler chicken. Jurnal Agripet. 15(1): 20–27.

Ibrahim, W., M. Hilmi, and N. Nurhayati. 2020. The effect of fermented pineapple peels in a diet that contains medicinal weeds on the performance broiler. In: International Conference on Agriculture and Applied Science (ICoAAS) 19 November 2020. Lampung. Indonesia.

Jin, Q., and M. F. Kirk. 2018. pH as a Primary Control in Environmental Microbiology: 1. Thermodynamic Perspective. Frontiers in Environmental Science. 6:21.

Jude-Ojei, B.S. 2010. Effect of fermentation on the proximate composition of ripe pineapple (Ananas comosus). Thesis. Department of Microbiology. Federal University of Technology, Akure.

Krisnan, R. 2005. The effect of application of tea waste (Camellia sinensis) fermented with Aspergillus niger on broiler. Journal Ilmu Ternak Dan Veteriner. 10(1): 1-5.

Kurniawan, H. 2016. Kualitas nutrisi ampas kelapa (cocos nuficena) fermentasi menggunakan Aspergillus niger. Buletin Peternakan. 40(1): 26-33.

Lasekan, O., and R. Shittu. 2019. Effect of solid-state fermentation and drying methods on the physicochemical properties of flour of two plantain cultivars grown in Malaysia. International Food Research Journal. 26(5): 1485-1494.

Lee, S. J., J. H. Lee, X. Yang, S. B. Kim, J. H. Lee, H. Y. Yoo, and S. W. Kim. 2015. Phenolic compounds: Strong inhibitors derived from lignocellulosic hydrolysate for 2,3‐butanediol production by Enterobacter aerogenes. Biotechnology Journal. 10(12): 1920-1928.

Limin, K. R. D., R. J. Shaver, R.J. Grant, and Schmidt. 2018. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science. 101(5): 4020-4033.

Limtong, S., S. Sintara, P. Suwanarit, and N. Lotong. 2005. Species diversity of molds in Thai traditional fermentation starters (Loog-pang). Kasetsart Journal (Natural Science). 39: 511-518.

Lyayi, E. A., and Z. A. Aderolu. 2004. Enhancement of the feeding value of some agro-industrial by products for laying hens after their solid-state fermentation with Trichoderma viride. African Journal of Biotechnology. 3(3): 182-185.

Lyayi, E. A. 2004. Changes in the Cellulose, Sugar and crude protein contents of agro-industrial by-products fermented with Aspergillus niger, Aspergillus flavus and Penicillium sp. African Journal of Biotechnology. 3(3): 816-188.

Mahadik, N. D., U. S. Puntambekar, K. B. Bastawde, J. M. Khire, and D. V. Gokhale. 2002. Production of acidic lipase by Aspergillus niger in solid-state fermentation. Process Biochemistry. 38: 715-721.

Mandey, J. S., B. Tulung, J. R. Leke, and B. F. J. Sondakh. 2017. Performance and carcass quality of broiler chickens fed diet containing pineapple waste meal fermented with "ragi tape". P.012-042. In: IOP Conference Series: Earth and Environmental Science 26–27 September 2017. Semarang, Indonesia.

Manosroi, A., C. Chankhampan, K. Pattamapun, W. Manosroi, and J. Manosroi. 2014. Antioxidant and gelatinolytic activities of papain from papaya latex and bromelain from pineapple fruits. Chiang Mai Journal of Science. 41(3): 635-648.

Mhetras, N. C., K. B. Bastawde, and D. V. Gokhale. 2009. Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207. Bioresource Technology. 100: 1486-1490.

Mulyono, M., V.D. Yunianto, N. Suthama, and D. Sunarti. 2019. The effect of fermentation time and Trichoderma levels on digestibility and chemical components of Black Soldier fly (Hermetia illucens) larvae. Livestock Research for Rural Development. 31(10).

Nurhayati, N. 2013. Penampilan Ayam pedaging yang mengkonsumsi pakan mengandung tepung kulit nanas disuple-mentasi dengan yoghurt. Jurnal Agripet. 13(2):15–20.

Nurhayati, N., and Berliana. 2014. Perubahan kandungan protein dan serat kasar kulit nanas yang difermentasi dengan plain yoghurt. Jurnal Ilmiah Ilmu-Ilmu Peternakan. 17(1): 8.

Oboh, G. 2006. Nutrient enrichment of cassava peels using a mixed culture of Saccharomyces cerevisae and lactobacillus spp solid media fermentation techniques. Electronic Journal of Biotechnology. 9(1): 46-49.

Ogodo, A., O. Ugbogu, R. A. Onyeagba, and H. C. Okereke. 2017. Effect of lactic acid bacteria consortium fermentation on the proximate composition and in-vitro starch/protein digestibility of maize (Zea mays) flour citation. American Journal of Microbiology and Biotechnology. 4: 35-43.

Okamoto, K., Y. Nitta., N. Maekawa, and H. Yanase. 2011. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzyme and Microbial Technology. 48(3): 273-277.

Omwango, E. O., N. M. N. Eliud, O. O. George, and N. W. Ruth. 2013. nutrient enrichment of pineapple waste using Aspergillus niger and Trichoderma viride by solid state fermentation. African Journal of Biotechnology. 12(43): 6193–6196.

Phromnoi, S., and N. Laorodphan. 2021. Supplementation of yeast (Saccharomyces cerevisiae) and traditional fermentation starter (Loog-Pang) on nutritive value and kinetic of degradation of pineapple peel by in vitro gas production technique. Journal Mahanakorn Veterinary Medicine. 16(1): 129-138.

Preetha, S.S, and N. Rita. 2020. Factors influencing the development of microbes in food. Shanlax International Journal of Arts, Science and Humanities. 7(3): 57–77.

Rafiu, T.A., T.B. Olayeni, O. Sangoniyi, and T. P. Akilapa. 2022. Growth performance, nutrient digestibility, carcass and organs evaluation of Cockerel fed diets with pineapple waste meal. International Journal of Science. Environment and Technology. 11(3): 132–142.

Rasmussen, M., P. Shrestha, S. Khanal, A. Pometto, and J. H. V. Leeuwen. 2010. Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum. Bioresource Technology. 101(10): 3526-3533.

Seifert, J., R. Ganser, and W. Brendel. 1979. Absorption of aproteolytic enzyme originating from plants out of the gastrointestinal tract into blood and lymph of rats. Zeitschrift fur Gastroenterologie. 17(1): 1–8.

Skory, C.D., S. N. Freer, and R. J. Bothast. 1997. Screening for ethanol-producing filamentous fungi. Biotechnology Letters. 19(3): 203–206.

Sugiharto, S., T. Yudiarti, I. Isroli, E. Widiastuti, and F. D. Putra. 2017. Effect of dietary supplementation with Rhizopus oryzae or Chrysonilia crassa on growth performance, blood profile, intestinal microbial population, and carcass traits in broilers exposed to heat stress. Archives Animal Breeding. 60: 347–356.

Suksathit, S., C. Wachirapakorn, and Y. Opatpatanakit. 2011. Effects of levels of ensiled pineapple waste and pangola hay fed as roughage sources on feed intake, nutrient digestibility, and ruminal fermentation of southern Thai native cattle. Songklanakarin Journal Science Technology. 33(3): 281–289.

Syauqi, A. 2020. Pemanfaatan limbah kulit nanas (Ananas comosus L.) menjadi bioetanol dengan penambahan ragi (Saccharomyces cerevisiae) yang berbeda. Buletin Loupe. 16: 67–73.

Swan, R., and S. Nagendran. 2014. Protease: An enzyme with multiple industrial applications. World Journal of Pharmacy and Pharmaceutical Sciences. 3(6): 568–579.

Wardono, H., A. Agus, A. Astuti, N. Ngadiyono, and B. Suhartanto. 2022. The effect of fermentation time on the nutritional value of sago hampas. P.97-102. In: 9th International seminar on tropical animal production (ISTAP 2021). Advances in Biological Sciences Research. Faculty of Animal Science, University Gajah Mada. Yogyakarta, Indonesia.

Widyastuti, T., and N. Hidayat. 2018. Optimization on fermentation process of protein concentrate of jatropha seed cake with n sources and minerals supplementation. Animal Production. 19(3): 167-178.

Yan, W., J. Qu, Y. Qu, T. Yue, Q. Zhang, W. Yi., X. Liu, and Y. Sun. 2022. Effect of biochar addition on mechanism of heavy metal migration and transformation in biogas residue aerobic compost. Fermentation. 8: 523.

Yoon, J.J., C. J. Cha, Y. S. Kim, and W. Kim. 2008. Degradation of cellulose by the major endoglucanase produced from The Brown-rot fungus Fomitopsis pinicola. Biotechnology Letters. 30(8): 1373-1378.