Effects of naphthalene acetic acid (NAA) on growth and yield of cassava cv. Rayong 9
Main Article Content
Abstract
Soaking cassava stem cuttings in naphthalene acetic acid (NAA) solutions at an appropriate concentration can enhance growth and increase yield. This study aimed to investigate the effects of different concentrations of NAA on the growth and yield of cassava cv. Rayong 9. The experiment was conducted at the experimental field of the Department of Plant Science, Faculty of Agriculture and Technology, Nakhon Phanom University. Before planting, cassava stem cuttings of 20 cm in length were soaked in NAA solutions of 0, 1,000, 2,000, and 4,000 mg/L for 30 minutes. The cassava was planted on 3 December 2018 using a randomized complete block design (RCBD) with four replications. Soil conditions before planting were collected, and cassava growth at 90, 180, and 270 days after planting (DAP) was recorded. The results indicated that soaking cassava stem cuttings in an NAA concentration of 1,000 mg/L was the optimal concentration for promoting growth and achieving the highest yield for almost the growth stage. It resulted in the highest total, storage root, stem, and leaf dry weights for almost age (90, 180, and 270 days after planting), and this concentration showed the highest growth rate (CGR) and storage root growth rate (SRGR) at 90-180 and 180-270 DAP. Moreover, NAA concentrations of 1,000 mg/L caused higher yield than those of 2,000 and 4,000 mg/L. Additionally, the use of NAA concentrations of 1,000 and 4,000 mg/L resulted in a higher harvest index than without using NAA.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กรมวิชาการเกษตร. 2653. เทคโนโลยีการผลิตมันสำปะหลัง. สถาบันวิจัยพืชพลังงานทดแทน กรมวิชาการเกษตร กระทรวงเกษตรและสหกรณ์, กรุงเทพฯ.
กรมวิชาการเกษตร. ม.ป.ป. พันธุ์มันสำปะหลังกรมวิชาการเกษตร. แหล่งข้อมูล: https://at.doa.go.th/cassvar/varR9.html. ค้นเมื่อ 21 เมษายน 2566.
จิราภรณ์ หาญสุริย์ และบุญมี ศิริ. 2561. ผลของการเคลือบเมล็ดพันธุ์ร่วมกับฮอร์โมนพืชผสมเพื่อยกระดับคุณภาพเมล็ดพันธุ์แตงกวาลูกผสม. แก่นเกษตร. 46(3): 507-516.
ปิยะณัฎฐ์ ผกามาศ และอนงค์ภัทร เหมลา. 2558. ผลของ NAA IBA และชนิดของกิ่งต่อการออกรากของกิ่งปักชำสบู่ดำ. วารสารเกษตร. 31(3): 251-258.
เพ็ญแข รุ่งเรือง, อนุกาญจน์ ชิณวงศ์, กาญจนา เหลืองสุวาลัย, กิริยา สังข์ทองวิเศษ และสุนทรียา กาละวงศ์. 2561. การขยายพันธุ์และการใช้แพกโคลบิวทราซอลเพื่อการผลิตม่วงไตรบุญเป็นไม้กระถาง. แก่นเกษตร. 46(4): 699-708.
วราภรณ์ หีดฉิม, สมปอง เตชะโต และสุรีรัตน์ เย็นช้อน. 2563. ผลของออกซินต่อการชักนำให้เกิดโซมาติคเอ็มบริโอและการพัฒนาเป็นพืชต้นใหม่ของปาล์มน้ำมันลูกผสมพันธุ์ทรัพย์ ม.อ. แก่นเกษตร. 48(1): 67-78.
สำนักงานเศรษฐกิจการเกษตร. 2564. สถิติการเกษตรของประเทศไทย ปี 2564. สำนักงานเศรษฐกิจการเกษตร กระทรวงเกษตรและสหกรณ์, กรุงเทพมหานคร.
โสภณ บุญธรรม, ธีรยุทธ ตู้จินดา, ณัฐา โพธาภรณ์ และประสาทพร สิมตะมาน. 2558. การชักนำให้เกิดต้นแฮพลอยด์ โดยการเพาะเลี้ยงรังไข่ของข้าวสายพันธ์ุลูกผสมกลับ Rathu Heenati/KDML105//Chai Nat 1. วารสารเกษตร. 31(2): 145-153.
Abah, S.P., U.E. Okoroafor, G.C. Nsofor, E. Uba, J.O. Mbe, S.C. Njoku, and C.N. Egesi. 2017. Auxins and cytokinin as a biostimulant for cassava root initiation and tuberization. Nigeria Agricultural Journal. 48(2): 165-170.
Alves, A.A.C. 2002. Cassava Botany and Physiology. p. 67-89. In: R.J. Hillocks, J.M. Thresh, and A.C. Bellotti. Cassava: Biology, Production and Utilization. CABI Publishing, New York.
Analytical Software. 2013. Statistix version 10. Analytical Software, Tallahassee, FL, USA.
Bray, R.H., and L.T. Kurtz. 1945. Determination of total, organic and available forms of phosphorus in soils. Soil Science. 59: 39-45.
Bremner, J.M. 1965. Total nitrogen. p. 1149-1178. In: A.G. Norman. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. Soil Science Society of America, Madison, WI, USA.
Bull, S.E., J. Ndunguru, W. Gruissem, J.R. Beeching, and H. Vanderschuren. 2011. Cassava: Constraints to production and the transfer of biotechnology to African laboratories. Plant Cell Reports. 30(5): 779-87.
Chanu, K.D., and G. Singh. 2020. Effects of 1-Naphthaleneacetic acid, a plant hormone, on invertebrates and Saccharomyces Cerevisiae. European Journal of Molecular & Clinical Medicine. 7(7): 4239-4244.
Chapman, H.D. 1965. Cation-exchange capacity. p. 891-901. In: A.G. Norman. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. Soil Science Society of America, Madison, WI, USA.
Demeke, Y., W. Tefera, N. Dechassa, and B. Abebie. 2014. Effects of plant growth regulators on in vitro cultured nodal explants of cassava (Manihot esculenta Crantz) clones. African Journal of Biotechnology. 13(28): 2830-2839.
El-Sharkawy, M.A. 2006. International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica. 44: 481-512.
Fan, M., Z. Liu, L. Zhou, T. Lin, Y. Liu, and L. Luo. 2011. Effects of plant growth regulators and saccharide on in vitro plant and tuberous root regeneration of cassava (Manihot esculenta Crantz). Journal of Plant Growth Regulation. 30: 11-19.
Food and Agriculture Organization of the United Nations. 2018. Food Outlook-Biannual Report on Global Food Markets-November 2018. Food and Agriculture Organization of the United Nations, Rome, Italy.
Gomez, K.A., and A.A. Gomez. 1984. Statistical Procedures for Agricultural Research. John Wiley and Sons, New York, USA.
Hossain, M., and Z. Urbi. 2016. Effect of naphthalene acetic acid on the adventitious rooting in shoot cuttings of Andrographis paniculata (Burm. f.) Wall. ex Nees: an important therapeutical herb. International Journal of Agronomy. 2016.
Howeler, R.H. 2013. Save and Grow: Cassava, A guide to sustainable production intensification. Food and Agriculture Organization of the United Nations, Rome, Italy.
Jackson, M.L. 1973. Soil chemical analysis. Pentice hall of India Pvt. Ltd., New Delhi, India.
Janket, A., N. Vorasoot, B. Toomsan, W. Kaewpradit, P. Theerakulpisut, C.C. Holbrook, C.K. Kvien, S. Jogloy, and P. Banterng. 2020a. Accumulation dynamics of starch and its granule size distribution of cassava genotypes at different growing seasons. Agriculture. 10(9): 380.
Janket, A., N. Vorasoot, B. Toomsan, W. Kaewpradit, S. Jogloy, P. Theerakulpisut, C.C. Holbrook, C.K. Kvien, and P. Banterng. 2020b. Starch accumulation and granule size distribution of cassava cv. Rayong 9 grown under irrigated and rainfed conditions using different growing seasons. Agronomy. 10(3): 412.
Javier, R.R., and N.G. Mamicpic. 1978. The effect of growth regulators on root and shoot production and on yield of cassava (Manihot esculenta, Crantz). Philippine Journal of Crop Science. 3(2): 90-102.
Kamau, J., R. Melis, M. Laing, J. Derera, P. Shanahan, and E. Ngugi. 2011. Farmers’ participatory selection for early bulking cassava genotypes in semi-arid Eastern Kenya. Journal of Plant Breeding and Crop Science. 3(3): 44-52.
Khan, S., and T.B. Bi. 2012. Direct shoot regeneration system for date palm (Phoenix dactylifera L.) cv. Dhakki as a means of micropropagation. Pakistan Journal of Botany. 44: 1965-1971.
Latif, S., and J. Müller. 2014. Cassava - How to explore the ‘all-sufficient’. Rural. 21(48): 30-31.
Lynch, J. 1995. Root architecture and plant productivity. Plant Physiology. 109(1): 7-13.
Mahakosee, S., S. Jogloy, N. Vorasoot, P. Theerakulpisut, P. Banterng, T. Kesmala, C. Holbrook, and C. Kvien. 2019. Seasonal variations in canopy size and yield of Rayong 9 cassava genotype under rainfed and irrigated conditions. Agronomy. 9: 362.
Mapayi, E.F., D.K. Ojo, O.A. Oduwaye, and J.B. Porbeni. 2013. Optimization of in-vitro propagation of cassava (Manihot esculenta Crantz) genotypes. Journal of Agricultural Science. 5(3): 261.
Phoncharoen, P., P. Banterng, N. Vorasoot, S. Jogloy, P. Theerakulpisut, and G. Hoogenboom. 2019a. Growth rates and yields of cassava at different planting dates in a tropical savanna climate. Scientia Agricola. 76: 376-388.
Phoncharoen, P., P. Banterng, N. Vorasoot, S. Jogloy, P. Theerakulpisut, and G. Hoogenboom. 2019b. The impact of seasonal environments in a tropical savanna climate on forking, leaf area index, and biomass of cassava genotypes. Agronomy. 9(1): 19.
Phosaengsri, W., P. Banterng, N. Vorasoot, S. Jogloy, S., and P. Theerakulpisut. 2019. Leaf performances of cassava genotypes in different seasons and its relationship with biomass. Turkish Journal of Field Crops. 24(1): 54-64.
Phuntupan, K., and P. Banterng. 2017. Physiological determinants of storage root yield in three cassava genotypes under different nitrogen supply. The Journal of Agricultural Science, Cambridge. 155(6): 978-992.
Prammanee, S., K. Kamprerasart, S. Salakan, and K. Sriroth. 2010. Growth and starch content evaluation on newly released cassava cultivars, Rayong 9, Rayong 7 and Rayong 80 at different harvest times. Agriculture and Natural Resources. 44(4): 558-563.
Rhoades, J.D., and J. van Schilfgaarde. 1976. An electrical conductivity probe for determining soil salinity. Soil Science Society of America Journal. 40(5): 647-651.
Santanoo, S., K. Vongcharoen, P. Banterng, N. Vorasoot, S. Jogloy, S. Roytrakul, and P. Theerakulpisut. 2019. Seasonal variation in diurnal photosynthesis and chlorophyll fluorescence of four genotypes of cassava (Manihot esculenta Crantz) under irrigation conditions in a tropical savanna climate. Agronomy. 9(4): 206.
Santanoo, S., K. Vongcharoen, P. Banterng, N. Vorasoot, S. Jogloy, S. Roytrakul, and P. Theerakulpisut. 2022. Physiological and proteomic responses of cassava to short-term extreme cool and hot temperature. Plants. 11(17): 2307.
Sawatraksa, N., P. Banterng, S. Jogloy, N. Vorasoot, and G. Hoogenboom. 2018. Chlorophyll fluorescence and biomass of four cassava genotypes grown under rain-fed upper paddy field conditions in the tropics. Journal of Agronomy and Crop Science. 204(6): 554-565.
Sawatraksa, N., P. Banterng, S. Jogloy, N. Vorasoot, and G. Hoogenboom. 2019. Cassava growth analysis of production during the off-season of paddy rice. Crop Science. 59(2): 760-771.
Sharma, M.K., and K.I. Joshi. 2015. Effect of foliar spray of GA3 and NAA on growth flowering and yield of China aster (Callistephus chinensis Nees) cultivars. International Journal of Agricultural Science and Research (IJASR). 5(4): 105-110.
Srivastava, L.M. 2002. Plant growth and development: hormones and environment. Elsevier, San Diego.
Taiz, L., and E. Zeiger. 2003. Plant physiology. 3rd Edition. Sinauer Associates, Sunderland.
Tomlin, C.D.S. 2006. The Pesticide Manual. 14th ed. British Crop Protection Council, Hampshire, UK.
Ullah, M.J., Q.A. Fattah, and F. Hossain. 2007. Response of growth, yield attributes and yield to the application of KNap and NAA in cowpea (Vigna unguiculata (L.) Walp.). Bangladesh Journal of Botany. 36(2): 127-132.
Vongcharoen, K., S. Santanoo, P. Banterng, S. Jogloy, N. Vorasoot, and P. Theerakulpisut. 2018. Seasonal variation in photosynthesis performance of cassava at two different growth stages under irrigated and rain-fed conditions in a tropical savanna climate. Photosynthetica. 56(4): 1398-1413.
Vongcharoen, K., S. Santanoo, P. Banterng, S. Jogloy, N. Vorasoot, and P. Theerakulpisut. 2019. Diurnal and seasonal variations in the photosynthetic performance and chlorophyll fluorescence of cassava ‘Rayong 9’under irrigated and rainfed conditions. Photosynthetica. 57(1): 268-285.
Walkley, A., and I.A. Black. 1947. Determination of organic matter in the soil by chromic acid digestion. Soil Science. 63: 251-264.
Wongnoi, S., P. Banterng, N. Vorasoot, S. Jogloy, and P. Theerakulpisut. 2020. Physiology, growth and yield of different cassava genotypes planted in upland with dry environment during high storage root accumulation stage. Agronomy. 10(4): 576.
Yan, Y.H., J.L. Li, X.Q. Zhang, W.Y. Yang, Y. Wan, Y.M. Ma, Y.Q. Zhu, Y. Peng, and L.K. Huang. 2014. Effect of naphthalene acetic acid on adventitious root development and associated physiological changes in stem cutting of Hemarthria compressa. PLoS One. 9(3): e90700.
Yuan, R., and D.H. Carbaugh. 2007. Effects of NAA, AVG, and 1-MCP on ethylene biosynthesis, preharvest fruit drop, fruit maturity, and quality of ‘Golden Supreme’ and ‘Golden Delicious’ apples. HortScience. 42(1): 101-105.