การพัฒนาเครื่องหมายดีเอ็นเอที่สัมพันธ์กับขนาดเมล็ด ในประชากรเมล็ด F5 ของคู่ผสมระหว่าง สายพันธุ์ขาวดอกมะลิ 105 ไม่ไวต่อช่วงแสง ต้นเตี้ย (KDML 105-9351(57D)) กับ Basmati

Main Article Content

พินิดา ภูผา
แสงทอง พงษ์เจริญกิต
ยุพเยาว์ คบพิมาย
กฤษณะ ลาน้ำเที่ยง
วราภรณ์ แสงทอง

บทคัดย่อ

ขนาดเมล็ดข้าวเป็นลักษณะสำคัญต่อการเพิ่มผลผลิตและคุณภาพข้าว ซึ่งพิจารณาจากความยาว ความกว้าง และความหนา ขนาดเมล็ดถูกควบคุมโดยยีนหลายตำแหน่ง งานวิจัยนี้จึงมีวัตถุประสงค์เพื่อพัฒนาเครื่องหมายดีเอ็นเอที่สัมพันธ์กับขนาดเมล็ดในประชากรเมล็ด F5 ของคู่ผสมระหว่างสายพันธุ์ขาวดอกมะลิ 105 ไม่ไวต่อช่วงแสง ต้นเตี้ย (KDML 105-9351(57D)) กับ Basmati ในงานวิจัยนี้ได้อ่านลำดับเบสทั้งจีโนมของข้าวพันธุ์แม่ KDML 105-9351(57D) และพันธุ์พ่อ Basmati และนำลำดับเบสของพันธุ์พ่อแม่ที่ได้มาเปรียบเทียบหาความแตกต่างของยีนในวิถีการควบคุมขนาดของเมล็ดข้าวจำนวน 83 ตำแหน่ง ได้ค้นหาและพัฒนาเครื่องหมายดีเอ็นเอของยีน 29 ตำแหน่งที่สามารถแยกระหว่าง homozygous ของอัลลีลพันธุ์แม่หรืออัลลีลพันธุ์พ่อ และ heterozygous ระหว่างอัลลีลพันธุ์แม่และอัลลีลพันธุ์พ่อได้ เมื่อวิเคราะห์ความสัมพันธ์ระหว่างจีโนไทป์และฟีโนไทป์ด้วยวิธี Simple regression พบจีโนไทป์ของเครื่องหมายดีเอ็นเอของยีน 7 ตำแหน่ง ได้แก่ GL7 qGL7-2 GS7 SMG1 TGW6 GS5 และ GW6a กับความยาวเมล็ดมีความสัมพันธ์กันทางสถิติ มีค่า R2 เท่ากับ 55.51 54.50 52.61 13.59 4.37 3.79 และ 2.93% ตามลำดับ ขณะที่พบจีโนไทป์ของเครื่องหมายดีเอ็นเอของยีน 5 ตำแหน่ง ได้แก่ qGL7-2 GL7 GS7 GW10 และ TGW6 กับความกว้างเมล็ดมีความสัมพันธ์กันทางสถิติ มีค่า R2 เท่ากับ 50.62 50.54 46.31 4.16 และ 3.26% ตามลำดับ และจีโนไทป์ของเครื่องหมายดีเอ็นเอของยีน 8 ตำแหน่ง ได้แก่ GL7 qGL7-2 GS7 TGW6 GW6a GW10 GL4 และ qGL10 กับความหนาเมล็ดมีความสัมพันธ์กันทางสถิติ มีค่า R2 เท่ากับ 17.13 16.27 14.52 13.17 7.44 6.06 3.73 และ 2.92% ตามลำดับ เมื่อวิเคราะห์ด้วยวิธี Multiple regression พบว่า จีโนไทป์ของเครื่องหมายดีเอ็นเอของยีน GL7 SMG1 และ TGW6 ร่วมกัน มีความสัมพันธ์กับความยาวเมล็ด มีค่า R2 เท่ากับ 64.15% ขณะที่จีโนไทป์ของเครื่องหมายดีเอ็นเอของยีน qGL7-2 GW10 และ TGW6 ร่วมกัน มีความสัมพันธ์กับความกว้างเมล็ด (R2 เท่ากับ 55.39%) และจีโนไทป์ของเครื่องหมายดีเอ็นเอของยีน GL7, TGW6, qGL10 และ GW10 ร่วมกัน มีความสัมพันธ์กับความหนาเมล็ด (R2 เท่ากับ 36.60%) เครื่องหมายดีเอ็นเอของยีนที่สัมพันธ์กับขนาดเมล็ดที่ได้นี้จะถูกนำไปใช้ในการปรับปรุงพันธุ์ข้าวที่เกิดจากคู่ผสมระหว่าง KDML 105-9351(57D) และ Basmati ให้มีขนาดเมล็ดยาว กว้าง และหนาขึ้นได้ โดยเป็นการใช้เครื่องหมายดีเอ็นเอช่วยในการคัดเลือกร่วมกับการปรับปรุงพันธุ์แบบดั้งเดิม

Article Details

บท
บทความวิจัย (research article)

References

ธานี ศรีวงศ์ชัย. 2566. การหาตำแหน่งยีนและการประยุกต์ใช้ในการปรับปรุงพันธุ์พืช (Gene mapping and application in plant breeding). แหล่งข้อมูล: http://www.corsat.agr.ku.ac.th/doc/01003579/144.pdf. ค้นเมื่อ 30 ธันวาคม 2566.

สำนักงานเศรษฐกิจการเกษตร. 2566. สถิติการเกษตรของประเทศไทย ปี 2565. แหล่งข้อมูล: https://www.oae.go.th/assets/portals/1/ebookcategory/95_yearbook2565/. ค้นเมื่อ 5 กรกฎาคม 2566.

สุทิน ชนะบุญ. 2560. บทที่ 6 การวิเคราะห์ข้อมูลเชิงอนุมาน. สถิติและการวิเคราะห์ข้อมูลในงานวิจัยด้านสุขภาพเบื้องต้น. (น. 148-160). ขอนแก่น: สํานักงานสาธารณสุขจังหวัดขอนแก่น.

สุภมาส อังศุโชติ. 2556. การวิเคราะห์ข้อมูลวิจัยเพื่อพัฒนาการเรียนการสอน. เจริญดีมั่นคงการพิมพ์, กรุงเทพฯ.

สุรีพร เกตุงาม. 2556. การปรับปรุงพันธุ์พืชระดับโมเลกุล. อุบลราชธานี: มหาวิทยาลัยอุบลราชธานี. 307 น.

Agriculture. 2022. Long grain rice varieties: Best choice of consumers. Available: https://k-agriculture.com/long-grain-rice-varieties-best-choice-of-consumers/. Accessed Aug. 13, 2022.

Ali, S.S., S.I. Yasin, T. Latif, and C.M. Rafiq. 2014. Genetic control of grain length and shape in Basmati lines of rice (Oryza sativa L.). Journal of Agricultural Research. 52(1): 25-34.

Archak, S., V. Lakshminarayanareddy, and J. Nagaraju. 2007. High-throughput multiplex microsatellite marker assay for detection and quantification of adulteration in Basmati rice (Oryza sativa). Electrophoresis. 28(14): 2396-2405.

Aya, K., T. Hobo, K. Sato-Izawa, M. Ueguchi-Tanaka, H. Kitano, and M. Matsuoka. 2014. A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant and Cell Physiology. 55(5): 897-912.

Bai, X., L. Luo, W. Yan, M.R. Kovi, W. Zhan, and Y. Xing. 2010. Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genetics. 11: 1-11.

Bazrkar-Khatibani, L., B.A. Fakheri, M. Hosseini-Chaleshtori, A. Mahender, N. Mahdinejad, and J. Ali. 2019. Genetic mapping and validation of quantitative trait loci (QTL) for the grain appearance and quality traits in rice (Oryza sativa L.) by using recombinant inbred line (RIL) population. International Journal of Genomics. 2019: 3160275.

Bhattacharjee, P., R.S. Singhal, and P.R. Kulkarni. 2002. Basmati rice: a review. International Journal of Food Science and Technology. 37(1): 1-12.

Calingacion, M., A. Laborte, A. Nelson, A. Resurreccion, J.C. Concepcion, V.D. Daygon, R. Mumm, R. Reinke, S. Dipti, P.Z. Bassinello, J. Manful, S. Sophany, K.C. Lara, J. Bao, L. Xie, K. Loaiza, A. El-hissewy, J. Gayin, N. Sharma, S. Rajeswari, S. Manonmani, N.S. Rani, S. Kota, S.D. Indrasari, F. Habibi, M. Hosseini, F. Tavasoli, K. Suzuki, T. Umemoto, C. Boualaphanh, H.H. Lee, Y.P. Hung, A. Ramli, P.P. Aung, R. Ahmad, J.I. Wattoo, E. Bandonill, M. Romero, C.M. Brites, R. Hafeel, H.S. Lur, K. Cheaupun, S. Jongdee, P. Blanco, R. Bryant, N.T. Lang, R.D. Hall, and M. Fitzgerald. 2014. Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLoS One. 9(1): e85106.

Cheng, Y.C., G. Li, M. Yin, T.V. Adegoke, Y.F. Wang, X.H. Tong, J. Zhang, and J.Z. Ying. 2021. Verification and dissection of one quantitative trait locus for grain size and weight on chromosome 1 in rice. Scientific Reports. 11(1): 18252.

Chen, H., H. Yu, W. Jiang, H. Li, T. Wu, J. Chu, P. Xin, Z. Li, R. Wang, and T. Zhou. 2021. Overexpression of ovate family protein 22 confers multiple morphological changes and represses gibberellin and brassinosteroid signalings in transgenic rice. Plant Science. 304: 110734.

Chen, T., L. Luo, Z. Zhao, H. Wang, C. Chen, Y. Liu, and W. Xiao. 2023. Fine mapping and candidate gene analysis of qGL10 affecting rice grain length. The Crop Journal. 11(2): 540-548.

Che, R., H.Tong, B. Shi, Y. Liu, S. Fang, D. Liu, Y. Xiao, B. Hu, L. Liu, H. Wang, M. Zhao, and C. Chu. 2016. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants. 2(1): 1-8.

Civan, P., S. Ali, R. Batista-Navarro, K. Drosou, C. Ihejieto, D. Chakraborty, A. Ray, P. Gladieux, and T.A. Brown. 2019. Origin of the aromatic group of cultivated rice (Oryza sativa L.) traced to the Indian subcontinent. Genome Biology and Evolution. 11(3): 832-843.

Custodio, M.C., M. Demont, A. Laborte, and J. Ynion. 2016. Improving food security in Asia through consumer-focused rice breeding. Global Food Security. 9: 19-28.

Dong, G., H. Xiong, W. Zeng, J. Li, and D. Du. 2022. Ectopic expression of the rice grain-size-affecting gene GS5 in maize affects kernel size by regulating endosperm starch synthesis. Genes. 13(9): 1542.

Duan, P., Y. Rao, D. Zeng, Y. Yang, R. Xu, B. Zhang, G. Dong, Q. Qian, and Y. Li. 2014. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. The Plant Journal. 77(4): 547-557.

Duan, P., J. Xu, D. Zeng, B. Zhang, M. Geng, G. Zhang, K. Huang, L. Huang, R. Xu, S. Ge, Q. Qian, and Y. Li. 2017. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Molecular Plant. 10(5): 685-694.

Gao, Q., N. Zhang, W.Q. Wang, S.Y. Shen, C. Bai, and X.J. Song. 2021. The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice. Plant Cell. 33(10): 3331-3347.

Fan, C., Y. Xing, H. Mao, T. Lu, B. Han, C. Xu, X. Li, and Q. Zhang. 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics. 112(6): 1164-1171.

Feng, Y., Q. Lu, R. Zhai, M. Zhang, Q. Xu, Y. Yang, S. Wang, X. Yuan, H. Yu, Y. Wang, and X. Wei. 2016. Genome wide association mapping for grain shape traits in indica rice. Planta. 244(4): 819-830.

Fitzgerald, M.A., S.R. McCouch, and R.D. Hall. 2009. Not just a grain of rice: the quest for quality. Trends in Plant Science. 14(3): 133-139.

Hori, K., and J. Sun. 2022. Rice grain size and quality. Rice. 15(1): 33.

Hu, J., Y. Wang, Y. Fang, L. Zeng, J. Xu, H. Yu, Z. Shi, J. Pan, D. Zhang, S. Kang, L. Zhu, G. Dong, L. Guo, D. Zeng, G. Zhang, L. Xie, G. Xiong, J. Li, and Q. Qian. 2015. A rare allele of GS2 enhances grain size and grain yield in rice. Molecular Plant. 8(10): 1455-1465.

Hu, Z., S.J. Lu, M.J. Wang, H. He, L. Sun, H. Wang, X.H. Liu, L. Jiang, J.L. Sun, X. Xin, W. Kong, C. Chu, H.W. Xue, J. Yang, X. Luo, and J.X. Liu. 2018. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Molecular Plant. 11(5): 736-749.

Ishimaru, K., N. Hirotsu, Y. Madoka, N. Murakami, N. Hara, H. Onodera, T. Kashiwagi, K. Ujiie, B.i. Shimizu, and A. Onishi. 2013. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics. 45(6): 707-711.

Kashif, H., Y.X. Zhang, A. Workie, R. Aamir, A. Adil, R. Hasanuzzaman, H. Wang, X.H. Shen, L.Y. Cao, and S.H. Cheng. 2020. Association mapping of quantitative trait loci for grain size in introgression line derived from Oryza rufipogon. Rice Science. 27(3): 246–254.

Lee, C.M., J. Park, B. Kim, J. Seo, G. Lee, and S. Jang. 2015. Influence of multi-gene allele combinations on grain size of rice and development of a regression equation model to predict grain parameters. Rice. 8(1): 33.

Li, N., R. Xu, and Y. Li. 2019a. Molecular networks of seed size control in plants. Annual Review of Plant Biology. 70: 435-463.

Li, X., Q. Tao, J. Miao, Z. Yang, M. Gu, G. Liang, and Y. Zhou. 2019b. Evaluation of differential qPE9-1/DEP1 protein domains in rice grain length and weight variation. Rice. 12(1): 1-10.

Li, P., Y.H. Chen, J. Lu, C.Q. Zhang, Q.Q. Liu, and Q.F. Li. 2022. Genes and their molecular functions determining seed structure, components, and quality of rice. Rice. 15(1): 18.

Liu, Q., R. Han, K. Wu, J. Zhang, Y. Ye, S. Wang, J. Chen, Y. Pan, Q. Li, X. Xu, J. Zhou, D. Tao, Y. Wu, and X. Fu. 2018. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nature Communications. 9(1): 852.

Li, Y., C. Fan, Y. Xing, Y. Jiang, L. Luo, L. Sun, D. Shao, C. Xu, X. Li, and J. Xiao. 2011. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics. 43(12): 1266-1269.

Luo, J., H. Liu, T. Zhou, B. Gu, X. Huang, Y. Shangguan, J. Zhu, Y. Li, Y. Zhao, Y. Wang, Q. Zhao, A. Wang, Z. Wang, T. Sang, Z. Wang, and B. Han. 2013. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. The Plant Cell. 25(9): 3360-3376.

Nagaraju, J., M. Kathirvel, R.R. Kumar, E.A. Siddiq, and S.E. Hasnain. 2002. Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. Proceedings of the National Academy of Sciences. 99(9): 5836-5841.

Ngangkham, U., S. Samantaray, M.K. Yadav, A. Kumar, P. Chidambaranathan, and J.L. Katara. 2018. Effect of multiple allelic combinations of genes on regulating grain size in rice. PLoS One. 13(1): e0190684.

Niu, Y., T. Chen, C. Wang, K. Chen, C. Shen, H. Chen, S. Zhu, Z. Wu, T. Zheng, F. Zhang, and J. Xu. 2021. Identification and allele mining of new candidate genes underlying rice grain weight and grain shape by genome-wide association study. BMC Genomics. 22(1): 602.

Qi, P., Y.S. Lin, X.J. Song, J.B. Shen, W. Huang, J.X. Shan, M.Z. Zhu, L. Jiang, J.P. Gao, and H.X. Lin. 2012. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Research. 22(12): 1666-1680.

Rasheed, H., S. Fiaz, M.A. Khan, S. Mehmood, F. Ullah, S. Saeed, S.U. Khan, T. Yaseen, R.M. Hussain, and A. Qayyum. 2022. Characterization of functional genes GS3 and GW2 and their effect on the grain size of various landraces of rice (Oryza sativa). Molecular Biology Reports. 49(6): 5397-5403.

Segami, S., K. Takehara, T. Yamamoto, S. Kido, S. Kondo, Y. Iwasaki, and K. Miura. 2017. Overexpression of SRS5 improves grain size of brassinosteroid-related dwarf mutants in rice (Oryza sativa L.). Breeding Science. 67(4): 393-397.

Shao, G., S. Tang, J. Luo, G. Jiao, X. Wei, A. Tang, J. Wu, J. Zhuang, and P. Hu. 2010. Mapping of qGL7-2, a grain length QTL on chromosome 7 of rice. Journal of Genetics and Genomics. 37(8): 523-531.

Shi, C., Y. Ren, L. Liu, F. Wang, H. Zhang, P. Tian, T. Pan, Y. Wang, R. Jing, T. Liu, F. Wu, Q. Lin, C. Lei, X. Zhang, S. Zhu, X. Guo, J. Wang, Z. Zhao, J. Wang, H. Zhai, Z. Cheng, and J. Wan. 2019. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiology. 180(1): 381-391.

Shin, Y., Y.J. Won, C. Lee, K.S. Cheon, H. Oh, G.S. Lee, J. Baek, I.S. Yoon, S.L. Kim, Y.S. Cha, K.H. Kim, and H. Ji. 2022. Identification of grain size-related QTLs in Korean japonica rice using genome resequencing and high-throughput image analysis. Agriculture. 12(1): 51.

Si, L., J. Chen, X. Huang, H. Gong, J. Luo, Q. Hou, T. Zhou, T. Lu, J. Zhu, Y. Shangguan, E. Chen, C. Gong, Q. Zhao, Y. Jing, Y. Zhao, Y. Li, L. Cui, D. Fan, Y. Lu, Q. Weng, Y. Wang, Q. Zhan, K. Liu, X. Wei, K. An, G. An, and B. Han. 2016. OsSPL13 controls grain size in cultivated rice. Nature Genetics. 48(4): 447-456.

Singh, V., A.K. Singh, T. Mohapatra, and R.K. Ellur. 2018. Pusa Basmati 1121–a rice variety with exceptional kernel elongation and volume expansion after cooking. Rice. 11: 1-10.

Song, X.J., T. Kuroha, M. Ayano, T. Furuta, K. Nagai, N. Komeda, S. Segami, K. Miura, D. Ogawa, T. Kamura, T. Suzuki, T. Higashiyama, M. Yamasaki, H. Mori, Y. Inukai, J. Wu, H. Kitano, H. Sakakibara, S.E. Jacobsen, and M. Ashikari. 2015. Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proceedings of the National Academy of Sciences. 112(1): 76-81.

Song, X.J., W. Huang, M. Shi, M.Z. Zhu, and H.X. Lin. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics. 39(5): 623-630.

Sun, L., X. Li, Y. Fu, Z. Zhu, L. Tan, F. Liu, X. Sun, X. Sun, and C. Sun. 2013. GS6, a member of the GRAS gene family, negatively regulates grain size in rice. Journal of Integrative Plant Biology. 55(10): 938-949.

Tanaka, N., M. Shenton, Y. Kawahara, M. Kumagai, H. Sakai, H. Kanamori, J. Yonemaru, S. Fukuoka, K. Sugimoto, and M. Ishimoto. 2020. Whole-genome sequencing of the NARO World Rice Core Collection (WRC) as the basis for diversity and association studies. Plant and Cell Physiology. 61(5): 922-932.

Tong, H., L. Liu, Y. Jin, L. Du, Y. Yin, Q. Qian, L. Zhu, and C. Chu. 2012. Dwarf and low-tillering acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. The Plant Cell. 24(6): 2562-2577.

Wang, L., D. Wang, Z. Yang, S. Jiang, J. Qu, W. He, Z. Liu, J. Xing, Y. Ma, Q. Lin, and F. Yu. 2021. Roles of FERONIA-like receptor genes in regulating grain size and quality in rice. Science China Life Sciences. 64(2): 294-310.

Wang, S., K. Wu, Q. Yuan, X. Liu, Z. Liu, X. Lin, R. Zeng, H. Zhu, G. Dong, Q. Qian, G. Zhang, and X. Fu. 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics. 44(8): 950-954.

Wang, S., S. Li, Q. Liu, K. Wu, J. Zhang, S. Wang, Y. Wang, X. Chen, Y. Zhang, C. Gao, F. Wang, H. Huang, and X. Fu. 2015a. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics. 47(8): 949-954.

Wang, Y., G. Xiong, J. Hu, L. Jiang, H. Yu, J. Xu, Y. Fang, L. Zeng, E. Xu, J. Xu, W. Ye, X. Meng, R. Liu, H. Chen, Y. Jing, Y. Wang, X. Zhu, J. Li, and Q. Qian. 2015b. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics. 47(8): 944-948.

Weng, J., S. Gu, X. Wan, H. Gao, T. Guo, N. Su, C. Lei, X. Zhang, Z. Cheng, X. Guo, J. Wang, L. Jiang, H. Zhai, and J. Wan. 2008. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research. 18(12): 1199-1209.

Wu, W., X. Liu, M. Wang, R.S. Meyer, X. Luo, M.N. Ndjiondjop, L. Tan, J. Zhang, J. Wu, H. Cai, C. Sun, X. Wang, R.A. Wing, and Z. Zhu. 2017. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature Plants. 3(6): 1-7.

Xia, D., H. Zhou, R. Liu, W. Dan, P. Li, B. Wu, J. Chen, L. Wang, G. Gao, Q. Zhang, and Y. He. 2018. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice. Molecular Plant. 11(5): 754-756.

Xie, X., M.H. Song, F. Jin, S.N. Ahn, J.P. Suh, H.G. Hwang, and S.R. McCouch. 2006. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theoretical and Applied Genetics. 113(5): 885-894.

Xu, C., Y. Liu, Y. Li, X. Xu, C. Xu, X. Li, J. Xiao, and Q. Zhang. 2015. Differential expression of GS5 regulates grain size in rice. Journal of Experimental Botany. 66(9): 2611-2623.

Yamamuro, C., Y. Ihara, X. Wu, T. Noguchi, S. Fujioka, S. Takatsuto, M. Ashikari, H. Kitano, and M. Matsuoka. 2000. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. The Plant Cell. 12(9): 1591-1605.

Yang, C., Y. Ma, Y. He, Z. Tian, and J. Li. 2018. OsOFP19 modulates plant architecture by integrating the cell division pattern and brassinosteroid signaling. The Plant Journal. 93(3): 489-501.

Yang, G., S. Chen, L. Chen, W. Gao, Y. Huang, C. Huang, D. Zhou, J. Wang, Y. Liu, M. Huang, W. Xiao, H. Wang, T. Guo, and Z. Chen. 2019. Development and utilization of functional KASP markers to improve rice eating and cooking quality through MAS breeding. Euphytica. 215(66): 1-12.

Ying, J.Z., M. Ma, C. Bai, X.H. Huang, J.L. Liu, Y.Y. Fan, and X.J. Song. 2018. TGW3, a major QTL that negatively modulates grain length and weight in rice. Molecular Plant. 11(5): 750-753.

Yin, W., Y. Xiao, M. Niu, W. Meng, L. Li, X. Zhang, D. Liu, G. Zhang, Y. Qian, and Z. Sun. 2020. ARGONAUTE2 enhances grain length and salt tolerance by activating BIG GRAIN3 to modulate cytokinin distribution in rice. The Plant Cell. 32(7): 2292-2306.

Yu, J., J. Miao, Z. Zhang, H. Xiong, X. Zhu, X. Sun, Y. Pan, Y. Liang, Q. Zhang, R. Rehman, J. Li, H. Zhang, and Z. Li. 2018. Alternative splicing of OsLG3b controls grain length and yield in japonica rice. Plant Biotechnology Journal. 16(9): 1667-1678.

Zhang, J., D. Zhang, Y. Fan, C. Li, P. Xu, W. Li, Q. Sun, X. Huang, C. Zhang, L. Wu, H. Yang, S. Wang, X. Su, X. Li, Y. Song, M.E. Wu, X. Lian, and Y. Li. 2021. The identification of grain size genes by RapMap reveals directional selection during rice domestication. Nature Communications. 12(1): 5673.

Zhang, L., B. Ma, Z. Bian, X. Li, C. Zhang, J. Liu, Q. Li, Q. Liu, and Z. He. 2020. Grain size selection using novel functional markers targeting 14 genes in rice. Rice. 13: 1-16.

Zhang, X., J. Wang, J. Huang, H. Lan, C. Wang, C. Yin, Y. Wu, H. Tang, Q. Qian, J. Li, and H. Zhang. 2012. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of Sciences. 109(52): 21534-21539.

Zhan, P., X. Wei, Z. Xiao, X. Wang, S. Ma, S. Lin, F. Li, S. Bu, Z. Liu, H. Zhu, G. Liu, G. Zhang, and S. Wang. 2021. GW10, a member of P450 subfamily regulates grain size and grain number in rice. Theoretical and Applied Genetics. 134(12): 3941-3950.

Zhao, D., C. Zhang, Q. Li, and Q. Liu. 2022. Genetic control of grain appearance quality in rice. Biotechnology Advances. 60: 108014.

Zhao, D.S., Q.F. Li, C.Q. Zhang, C. Zhang, Q.Q. Yang, L.X Pan, X.Y. Ren, J. Lu, M.H Gu, and Q.Q. Liu. 2018. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature Communications. 9(1): 1240.

Zhong, H., C. Liu, W. Kong, Y. Zhang, G. Zhao, T. Sun, and Y. Li. 2020. Effect of multi-allele combination on rice grain size based on prediction of regression equation model. Molecular Genetics and Genomics. 295: 465-474.

Zhong, Q., Q. Jia, W. Yin, Y. Wang, Y. Rao, and Y. Mao. 2023. Advances in cloning functional genes for rice yield traits and molecular design breeding in China. Frontiers in Plant Science. 14: 1206165.

Zuo, J., and J. Li. 2014. Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annual Review of Genetics. 48: 99-118.