Identification of potential phosphate-solubilizing bacteria across different levels of humic acid application under sweet corn cultivation

Main Article Content

Mona Ayu Santi
Saowalak Somboon
Tanabhat-Sakorn Sukitprapanon
Phrueksa Lawongsa

บทคัดย่อ

Phosphate-solubilizing bacteria (PSB) plays a crucial role in enhancing phosphorus availability to plants, thereby promoting plant growth and productivity in agricultural ecosystems. Given the inherent challenges of low soil fertility, organic matter deficiency, and phosphorus fixation in northeastern Thailand's soil, organic fertilizers such as humic acid (HA) offer a promising avenue for enhancing soil health and productivity. Therefore, further investigation into the direct effects of humic acid on PSB is considered crucial, particularly to determine the optimal application rates that can stimulate PSB efficiency in soil. This study aims to assess the influence of different concentrations of humic acid on the population of PSB and identify the potential PSB isolates from distinct HA application rates. The pot experiment was conducted using a completely randomized design with six treatments: T1 (control), T2 (chemical fertilizer), T3 (HA 0.5%), T4 (HA 1%), T5 (HA 1.5%), and T6 (HA 2%). The initial soil (O1) was also assessed. We uncovered that the highest PSB population was observed with a 1.5% HA treatment, presenting a 40% increase compared to the control. This suggests that a 1.5% HA concentration is the most favorable for increasing the PSB populations, while higher concentrations may not provide additional benefits and might potentially lead to adverse effects on the bacterial population. Soluble P content in broth culture medium was analyzed during a 9-day period with 3-day interval measurements. The five potential PSB isolates were chosen and identified as Priestia megaterium, Bacillus subtilis, Priestia aryabhattai, Bacillus sp., and Mycolicibacterium sp. The strongest solubilizing ability was observed from Priestia megaterium and Bacillus sp., with soluble P concentrations of approximately ± 607 mg L−1 and ± 601 mg L−1, respectively, on day 6. This study provides comprehensive knowledge regarding the potential PSB community isolated from various HA treatments and suggests their potential for 

Article Details

บท
บทความวิจัย (research article)

References

Ali, M., and W. Mindari. 2016. Effect of humic acid on soil chemical and physical characteristics of embankment. MATEC Web of Conferences. 58: 01028.

Aliyat, F. Z., M. Maldani, M. E. Guilli, L. Nassiri, and J. Ibijbijen. 2020. Isolation and characterization of phosphate solubilizing bacteria from phosphate solid sludge of the moroccan phosphate mines. The Open Agriculture Journal. 1874-3315/20.

Ampong, K., M.S. Thilakaranthna, and L. Y. Gorim. 2022. Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy. 4-2024. doi: 10.3389/fagro.2022.848621.

Arunrat, N., P. Kongsurakan, S. Sereenonchai, and R. Hatano. 2020. Soil organic carbon in sandy paddy fields of Northeast Thailand: A Review. Agronomy. 10(8): 1061.

Baloach, N., M. Yousaf, W. P. Akhter, S. Fahad, B. Ullah, G. Qadir, and Z. I. Ahmed. 2014. Integrated effect of phosphate solubilizing bacteria and humic acid on physiomorphic attributes of maize. International Journal of Current Microbiology and Applied Science. 3(6): 549-554.

Carstensen, A., A. Herdean, S. B. Schmidt, A. Sharma, C. Spetea, M. Pribil, and S. Husted. 2018. The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiology. 177(1): 271–84.

Chaitra, P. 2018. Effect of humic acid on soil microbial population and enzymatic activity. International Journal of Current Microbiology and Applied Sciences. 7(11): 1729–33.

Chen, Q., and S. Liu. 2019. Identification and characterization of the phosphate-solubilizing bacterium Pantoea Sp. S32 in reclamation soil in Shanxi, China. Frontiers in Microbiology. 10-2019. doi: 10.3389/fmicb.2019.02171.

Chen, Y. P., P. D. Rekha, A. B. Arun, F. T. Shen, W. A. Lai, and C. C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology. 34(1): 33–41.

Coico, R., 2006. Gram Staining. Current Protocols in Microbiology. 00(1). doi: 10.1002/9780471729259.mca03cs00.

Collavino, M. M., P. A. Sansberro, L. A. Mroginski, and O. M. Aguilar. 2010. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote phaseolus vulgaris growth. Biology and Fertility of Soils. 46(7): 727–38.

Cozzolino, V., H. Monda, D. Savy, V. D. Meo, G. Vinci, and K. Smalla. 2021. Cooperation among phosphate-solubilizing bacteria, humic acids and arbuscular mycorrhizal fungi induces soil microbiome shifts and enhances plant nutrient uptake. Chemical and Biological Technologies in Agriculture. 8(1): 31.

Deng, C., N. Zhang, X. Liang, T. Huang, and B. Li. 2022. Bacillus Aryabhattai LAD impacts rhizosphere bacterial. community structure and promotes maize plant growth. Journal of the Science of Food and Agriculture. 102(14): 6650–57.

De Hita, D., M. Fuentes, A. M. Zamarreño, Y. Ruiz, and J. M. Garcia-Mina. 2020. Culturable bacterial endophytes from sedimentary humic acid-treated plants. Frontiers in Plant Science. 11: 837.

Hussain, A., M. Ahmad, M. Z. Mumtaz, F. Nazli, M. A. Farooqi, I. Khalid, Z. Iqbal, and H. Arshad. 2019. Impact of integrated use of enriched compost, biochar, humic acid and alcaligenes Sp. AZ9 on maize productivity and soil biological attributes in natural field conditions. Italian Journal of Agronomy. 14(2): 101–7.

Ding, Z., E. F. Ali, Y. A. Almaroai, M. A. Eissa, and A. H. A. Abeed. 2021. Effect of potassium solubilizing bacteria and humic acid on faba bean (Vicia Faba L.) plants grown on sandy loam soils. Journal of Soil Science and Plant Nutrition. 21(1): 791–800.

Ekin, Z. 2019. Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability. 11(12): 3417.

El-Sayed, M. A. M., and M. T. El-Sayed. 2020. Effect of humic acid, biofertilizers and mineral phosphate on soil microbial activity and productivity of pea plants under toshka conditions. Alexandria Science Exchange Journal. 41: 489–511.

Erdal, İ., M. Bozkurt, K. Çimrin, S. Karaca, and M. Sağlam. 2000. Effects of humic acid and phosphorus applications on growth and phosphorus uptake of corn plant (Zea mays L.) grown in a calcareous Soil. Turkish Journal of Agriculture and Forestry. 24(6): 663–68.

Etesami, H., B. R. Jeong, and B. R. Glick. 2021. Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant. Frontiers in Plant Science. 12-2021.

Gupta, R. S., S. Patel, N. Saini, and S. Chen. 2020. Robust demarcation of 17 distinct Bacillus species Clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: Description of Robertmurraya Kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus Clades of species. International Journal of Systematic and Evolutionary Microbiology. 70(11): 5753–98.

Gupta, R., A. Kumari, S. Sharma, O. M. Alzahrani, A. Noureldeen, and H. Darwish. 2022. Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi Journal of Biological Sciences. 29(1): 35–42.

Hellequin, E., C. Monard, M. Chorin, N. L. Bris, V. Daburon, O. Klarzynski, and F. Binet. 2020. Responses of active soil microorganisms facing to a soil biostimulant input compared to plant legacy effects. Scientific Reports. 10(1): 13727.

Jamal, A., I. Hussain, M. S. Sarir, M. Sharif, and M. Fawad. 2018. Investigating combination and individual impact of phosphorus and humic acid on yield of wheat and some soil properties. Türk Tarım ve Doğa Bilimleri Dergisi. 5(4): 492–500.

Jida, M., C. Löscher, R. Schmitz, and F. Assefa. 2016. Phosphate solubilization and multiple plant growth promoting properties of rhizobacteria isolated from chickpea (Cicer Aeritinum L.) producing areas of Ethiopia. African Journal of Biotechnology. 15(35): 1899-1912.

Jin, Q., and M. F. Kirk. 2018. pH as a primary control in environmental microbiology: 1. Thermodynamic perspective. Frontiers in Environmental Science. 6-2018. doi: 10.3389/fenvs.2018.00021.

Jing, J., S. Zhang, L. Yuan, Y. Li, Y. Zhang, and B. Zhao. 2022. Synergistic effects of humic acid and phosphate fertilizer facilitate root proliferation and phosphorus uptake in low-fertility soil. Plant and Soil. 478(1): 491–503.

Jones, C., J. Hatier, M. Cao, K. Fraser, and S. Rasmussen. 2015. Metabolomics of plant phosphorus-starvation response. PP. 215–36 in Annual Plant Reviews Volume 48. John Wiley & Sons, Ltd.

Jun, L. I., L. Yuan, B. Zhao, L. I. Yan-ting, W. E. N. Yan-chen, L. I. Wei, and L. I. N. Zhi-an 2017. Effect of adding humic acid to phosphorous fertilizer on maize yield and phosphorus uptake and soil available phosphorus content. Journal of Plant Nutrition and Fertilizers. 23(3): 641–48.

Kang, S., R. Radhakrishnan, Y. You, G. Joo, I. Lee, K. Lee, and J. Kim. 2014. Phosphate solubilizing Bacillus Megaterium Mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian Journal of Microbiology. 54(4): 427–33.

Katznelson, H., and B. Bose. 1959. Metabolic activity and phosphate-dissolving capability of bacterial isolates from wheat roots, rhizosphere, and non-rhizosphere soil. Canadian Journal of Microbiology. 5(1): 79–85.

Khan, F., A. B. Siddique, S. Shabala, M. Zhou, and C. Zhao. 2023. Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants. 12(15): 2861.

Kitson, R. E., and M. G. Mellon. 1944. Colorimetric determination of phosphorus as molybdivanadophosphoric acid. Industrial andEngineering Chemistry Analytical Edition. 16(6): 379–383.

Koczorski, P., B. U. Furtado, M. Golebiewski, P. Hulisz, D. Thiem, C. Baum, M. Weih, and K. Hrynkiewicz. 2022. Mixed growth of salix species can promote phosphate-solubilizing bacteria in the roots and rhizosphere. Frontiers in Microbiology. 13-2022. doi: 10.3389/fmicb.2022.1006722.

Li, Q., Z. Hou, D. Zhou, M. Jia, S. Lu, and J. Yu. 2022. A Plant growth-promoting bacteria Priestia Megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway. Frontiers in Plant Science. 13: 1046181.

Li, Y., F. Fang, J. Wei, X. Wu, R. Cui, G. Li, F. Zheng, and D. Tan. 2019. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Scientific Reports. 9(1): 12014.

Liang, J., J. Liu, P. Jia, T. Yang, Q. Zeng, S. Zhang, B. Liao, W. Shu, and J. Li. 2020. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. The ISME Journal. 14(6): 1600–1613.

Lundquist, E., K. Scow, L. Jackson, S. Uesugi, and C. Johnson. 1999. Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biology and Biochemistry. 3: 1661–75.

Mohamed, E. A. H., A. G. Farag, and S. A. Youssef. 2018. Phosphate solubilization by Bacillus Subtilis and Serratia Marcescens isolated from tomato plant rhizosphere. Journal of Environmental Protection. 9(3): 266–77.

Mulyatni, A. S., R. H. Praptana, and D. Santoso. 2018. The Effect of biostimulant in root and population of phosphate solubilizing bacteria: A study case in upland rice. IOP Conference Series: Earth and Environmental Science. 183(1): 012016.

Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters. 170(1): 265–70.

Ndung’u-Magiroi, K. W., L. Herrmann, J. R. Okalebo, C. O. Othieno, P. Pypers, and D. Lesueur. 2012. Occurrence and genetic diversity of phosphate-solubilizing bacteria in soils of differing chemical characteristics in Kenya. Annals of Microbiology. 62(3): 897–904.

Neal, A. L., M. Blackwell, E. Akkari, C. Guyomar, I. Clark, and P. R. Hirsch. 2018. Phylogenetic distribution, biogeography and the effects of land management upon bacterial non-specific acid phosphatase gene diversity and abundance. Plant and Soil. 427(1): 175–89.

Pan, L., and B. Cai. 2023. Phosphate-solubilizing bacteria: Advances in their physiology, molecular mechanisms and microbial community effects. Microorganisms. 11(12): 2904.

Pande, A., P. Pandey, S. Mehra, M. Singh, and S. Kaushik. 2017. Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. Journal of Genetic Engineering and Biotechnology. 15(2): 379–91.

Pandey, A., P. Trivedi, B. Kumar, and L. M. S. Palni. 2006. Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas Putida (B0) isolated from a sub-alpine location in the indian central himalaya. Current Microbiology. 53(2): 102–7.

Pantigoso, H. A., D. K. Manter, S. J. Fonte, and J. M. Vivanco. 2023. Root exudate-derived compounds stimulate the phosphorus solubilizing ability of bacteria. Scientific Reports. 13(1): 4050.

Paul, D., and S. N. Sinha. 2016. Isolation and characterization of phosphate solubilizing bacterium Pseudomonas Aeruginosa KUPSB12 with antibacterial potential from river ganga, India. Annals of Agrarian Science. 15(1): 130–36.

Paz-Ares, J., M. I. Puga, M. Rojas-Triana, I. Martinez-Hevia, S. Diaz, C. Poza-Carrión, M. Miñambres, and A. Leyva. 2022. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. Molecular Plant. 15(1): 104–24.

Pingale, S. S., and P. S. Virkar. 2013. Study of influence of phosphate dissolving micro-organisms on yield and phosphate uptake by crops. European Journal of Experimental Biology. 3(2): 191-193.

Prabhu, N., S. Borkar, and S. Garg. 2019. Phosphate solubilization by microorganisms. PP. 161–76 in Advances in Biological Science Research. Elsevier.

Prakash, J., and N. K. Arora. 2019. Phosphate-solubilizing Bacillus Sp. Enhances growth, phosphorus uptake and oil yield of Mentha Arvensis L. 3 Biotech. 9(4): 126.

Ratzke, C., and J. Gore. 2018. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biology. 16(3): 2004248.

Ren, H., M. S. Islam, H. Wang, H. Guo, Z. Wang, X. Qi, S. Zhang, J. Guo, Q. Wang, and B. Li. 2022. Effect of humic acid on soil physical and chemical properties, microbial community structure, and metabolites of decline diseased bayberry. International Journal of Molecular Sciences. 23(23): 14707.

Rodriguez, H., and R. F. Vidal. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances. 17: 319–39.

Saeid, A., E. Prochownik, and J. Dobrowolska-Iwanek. 2018. Phosphorus solubilization by Bacillus Species. Molecules. 23(11): 2897.

Saengwilai, P. J., P. Bootti, and L. Klinnawee. 2023. Responses of rubber tree seedlings (Hevea Brasiliensis) to phosphorus deficient soils. Soil Science and Plant Nutrition. 69(2): 78–87.

Shao, T., J. Zhao, A. Liu, X. Long, and Z. Rengel. 2020. Effects of soil physicochemical properties on microbial communities in different ecological niches in coastal area. Applied Soil Ecology. 150: 103486.

Sharma, S. B., R. Z. Sayyed, M. H. Trivedi, and T. A. Gobi. 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus. 2(1): 587.

Soil Survey Staff. 2014. Keys to soil taxonomy (12th ed.). Natural Resources Conservation Service, USDA.

Tang, C., K. Cheng, B. Liu, M. Antonietti, and F. Yang. 2022. Artificial humic acid facilitates biological carbon sequestration under freezing-thawing conditions. Science of The Total Environment. 849: 157841.

Tang, C., Y. Li, J. Song, M. Antonietti, and F. Yang. 2021. Artificial humic substances improve microbial activity for binding CO2. iScience. 24(6): 102647.

Teng, Z., X. Zhao, J. Yuan, M. Li, and T. Li. 2021. Phosphate functionalized iron based nanomaterials coupled with phosphate solubilizing bacteria as an efficient remediation system to enhance lead passivation in soil. Journal of Hazardous Materials. 419: 126433.

Trakoonyingcharoen, P., I. Kheoruenromne, A. Suddhiprakarn, and R. J. Gilkes. 2005. Phosphate sorption by thai red oxisols and red ultisols. Soil Science. 170(9): 716–25.

Vikram, N., A. Sagar, C. Gangwar, R. Husain, and R. N. Kewat. 2022. Properties of humic acid substances and their effect in soil quality and plant health: Humus and humic substances - Recent Advances. Intech Open.

Wang, Z., H. Zhang, L. Liu, S. Li, J. Xie, X. Xue, and Y. Jiang. 2022. Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Microbiology. 22(1): 296.

Weiß, C. H. 2007. StatSoft, Inc., Tulsa, OK.: Statistica, Version 8. AStA Advances in Statistical Analysis. 91(3): 339–41.

Xiong, Q., S. Wang, X. Lu, Y. Xu, L. Zhang, X. Chen, G. Xu, D. Tian, L. Zhang, J. Jing, and X. Ye. 2023. The effective combination of humic acid phosphate fertilizer regulating the form transformation of phosphorus and the chemical and microbial mechanism of its phosphorus availability. Agronomy. 13(6): 1581.

Xu, J., E. Mohamed, Q. Li, T. Lu, H. Yu, and W. Jiang. 2021. Effect of humic acid addition on buffering capacity and nutrient storage capacity of soilless substrates. Frontiers in Plant Science 12-2021. https://doi.org/10.3389 /fpls.2021.644229.

Yuan, Y., S. Gai, C. Tang, Y. Jin, K. Cheng, M. Antonietti, and F. Yang. 2022. Artificial humic acid improves maize growth and soil phosphorus utilization efficiency. Applied Soil Ecology. 179: 104587.

Zhalnina, K., K. B. Louie, Z. Hao, N. Mansoori, U. N. D. Rocha, S. Shi, H. Cho, U. Karaoz, D. Loqué, B. P. Bowen, M. K. Firestone, T. R. Northen, and E. L. Brodie. 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology. 3(4): 470–80.

Zhang, X., Y. Zhan, H. Zhang, R. Wang, X. Tao, L. Zhang, Y. Zuo, L. Zhang, Y. Wei, and J. Li. 2021. Inoculation of phosphate-solubilizing bacteria (Bacillus) regulates microbial interaction to improve phosphorus fractions mobilization during kitchen waste composting. Bioresource Technology. 340: 125714.