ผลของสารสกัดสมุนไพรฝางและซิลเวอร์ไอออน ในการยับยั้งเชื้อแบคทีเรียก่อโรคเต้านมอักเสบในโคนม
Main Article Content
บทคัดย่อ
ปัญหาเต้านมอักเสบในโคนมส่วนใหญ่เกิดจากการติดเชื้อแบคทีเรีย ทำให้ต้องใช้ยาปฏิชีวนะในการรักษา ก่อให้เกิดการตกค้างของยาปฏิชีวนะ และการเพิ่มอุบัติการณ์ดื้อยาของเชื้อแบคทีเรียได้ การใช้สมุนไพรหรือสารอื่นๆ จึงเป็นทางเลือกหนึ่งในการทดแทนการใช้ยาปฏิชีวนะ สมุนไพรฝางเป็นสมุนไพรที่มีฤทธิ์ในการยับยั้งเชื้อแบคทีเรีย และซิลเวอร์ไอออนสามารถฆ่าเชื้อแบคทีเรีย ไวรัส และเชื้อราได้ ารศึกษานี้มีวัตถุประสงค์เพื่อประเมินประสิทธิภาพของสารสกัดสมุนไพรฝางและซิลเวอร์ไอออน ในการยับยั้งเชื้อแบคทีเรียก่อโรคเต้านมอักเสบในโคนม ด้วยวิธีการตรวจวัดความเข้มข้นของสมุนไพรฝางและซิลเวอร์ไอออนที่น้อยที่สุด (Minimum Inhibitory Concentratin : MIC) ในการยับยั้งเชื้อแบคทีเรียก่อโรคเต้านมอักเสบในโคนม โดยมีความเข้มข้นของสมุนไพรฝางเท่ากับ 20, 10, 5, 2.5, 1.25, 0.62, 0.31, 0.07, 0.04 และ 0.02 มก./มล. ตามลำดับ และระดับความเข้มข้นของซิลเวอร์ไอออนเท่ากับ 2, 1 และ 0.5 มลม./มล. ตามลำดับ พบว่าสมุนไพรฝางมีค่า MIC อยู่ในช่วงระหว่าง 0.04 – 2.5 มก./มล. โดยเชื้อ Enterococcus faecalis มีค่า MIC น้อยที่สุดคือ 0.04 มก./มล. และ Streptococcus uberis ที่ 2.5 มก./มล. รวมไปถึงซิลเวอร์ไอออนพบว่าทุกเชื้อแบคทีเรียก่อโรคเต้านมอักเสบที่นำมาทดสอบ มีค่า MIC อยู่ที่ 0.5 มลม./มล. จากผลการทดลองสรุปได้พืชสมุนไพรฝางและซิลเวอร์ไอออนสามารถยับยั้งเชื้อแบคทีเรียก่อโรคเต้านมอักเสบได้อย่างมีประสิทธิภาพ ซึ่งจะเป็นประโยชน์ในการนำไปใช้เชิงพาณิชย์ต่อไปได้
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
ชนัญ ผลประไพ และศรัญยู อุ่นทวี. 2562. การพัฒนากระบวนการเตรียมสารสกัดสมุนไพรไทยที่มีฤทธิ์ต้านอนุมูลอิสระ. วารสารแก่นเกษตร. 8: 479–492.
ธัชฏาพร ไชยคุณ, ศุภณิดา สุระวงศ์, ศุกลรัตน์ บุณยยาตรา และวิทยา สุริยาสถาพร. 2548. ปัจจัยที่สัมพันธ์กับการเกิดเต้านมอักเสบแบบไม่แสดงอาการในแม่โครีดนมหลังคลอดในเขตพื้นที่จังหวัดเชียงใหม่และลำพูน. เชียงใหม่สัตวแพทยสาร. 3: 31-42.
ธนภัทร ศิริพงศทัต. 2562. การเสริมสารสกัดหยาบจากบอระเพ็ดในอาหารไก่เนื้อ. วิทยานิพนธ์ ปริญญาวิทยาศาสตรมหาบัณฑิต มหาวิทยาลัยแม่โจ้. เชียงใหม่.
ศุกลรัตน์ บุณยยาตรา, จุฬาณี ถาบุญเป็ง, ขวัญชาย เครือสุคนธ์ และวิทยา สุริยาสถาพร. 2550. การดื้อยาต้านจุลชีพของเชื้อแบคทีเรียที่สัมพันธ์กับเต้านมอักเสบในแม่โครีดนมในเขตจังหวัดเชียงใหม่. เชียงใหม่สัตวแพทยสาร. 5: 135-145.
Adams, N. W., and J. R. Kramer. 1999. Silver speciation in wastewater effluent, surface waters, and pore waters. Environmental Toxicology and Chemistry: International Journal. 18: 2667-2673.
Ali, A., H. Zafar, M. Zia, I. ul Haq, A. R. Phull, J. S. Ali, and A. Hussain. 2016. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications. 9: 49-67.
Cao, X., and W. Harris. 2010. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource Technology. 101: 5222-5228.
Chaloupka, K., Y. Malam, and A. M. Seifalian. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology. 28: 580-588.
Chinmayee, S., M. A. Kuma, M. T. Kuma, and C. Deepak. 2024. Strategies for preventing environmental mastitis in Dairy farming: A reviews. Asian Journal of Advances in Agricultural Research. 24: 7-15.
Cheesman, M. J., A. Ilanko, B. Blonk, and I. E. Cock. 2017. Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution?. Pharmacognosy Reviews. 11: 57-72.
Das, M., and S. Goswami. 2019. Antifungal and antibacterial property of guava (Psidium guajava) leaf extract: Role of phytochemicals. International Journal of Health Science Research. 9: 39-45.
Domínguez, A. V., R. A. Algaba, A. M. Canturri, A. R. Villodres, and Y. Smani. 2020. Antibacterial Activity of Colloidal Silver against Gram-Negative and Gram-Positive Bacteria. Antibiotics. 9: 36.
Golus, J., R. Sawicki, J. Widelski, and G. Ginalska. 2016. The agar microdilution method–a new method for antimicrobial susceptibility testing for essential oils and plant extracts. Journal of Applied Microbiology. 121: 1291-1299.
Gupta, P. D., and T. J. Birdi. 2017. Development of botanicals to combat antibiotic resistance. Journal of Ayurveda and Integrative Medicine. 8: 266-275.
Hachicho, N., P. Hoffmann, K. Ahlert, and H. J. Heipieper. 2014. Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2. FEMS Microbiology Letters. 355: 71-77.
Hamad, A., K. S. Khashan, and A. Hadi. 2020. Silver nanoparticles and silver ions as potential antibacterial agents. Journal of Inorganic and Organometallic Polymers and Materials. 30: 4811-4828.
Hagner, K. A., H. S. Nordgren, K. Sarjokari, A. Sukura, and P. J. Rajala-Schultz. 2024. Role of mastitis in on-farm deaths of Finnish dairy cows. Journal of dairy science. TBC. 1-13.
Hassan, K. J., S. Samarasinghe, and M. G. Lopez-Benavides. 2009. Use of neural networks to detect minor and major pathogens that cause bovine mastitis. Journal of Dairy Science. 92: 1493-1499.
Hemthanon, T., and P. Ungcharoenwiwat. 2022. Anitibacterial activity, stability, and hemolytic activity of heartwood extract from Caesalpinia sappan for application on nonwoven fabric. ScienceDirect. 55: 9-17.
Hikino, H., T. Taguchi, H. Fujimura, and Y. Hiramatsu. 1977. Antiinflammatory principles of Caesalpinia sappan wood and of Haematoxylon campechianum wood1. Planta Medica. 31: 214-220.
Hwang, H. S., and J. H. Shim. 2018. Brazilin and Caesalpinia sappan L. extract protect epidermal keratinocytes from oxidative stress by inducing the expression of GPX7. Chinese Journal of Natural Medicines. 16: 203-209.
Izquierdo, G. 2017. Multiple sclerosis symptoms and spasticity management: new data. Neurodegenerative Disease Management. 7: 7-11.
Jung, E. G., K. I. Han, H. J. Kwon, B. B. Patnaik, W. J. Kim, G. M. Hur, and M. D. Han. 2015. Anti-inflammatory activity of sappanchalcone isolated from Caesalpinia sappan L. in a collagen-induced arthritis mouse model. Archives of Pharmacal Research. 38: 973-983.
Juwitaningsih, T., S. A. Sari, I. S. Jahro, and N. Windayani. 2021. Phytochemical analysis and antibacterial activity of acetone extract of secang (Caesalpinia sappan L). Journal Jamu Indonesia. 6: 2407-7178.
Kampa, J., V. Sukolapong, A. Chaiyotwittakun, S. Rerk-u-suke, and A. Polpakdee. 2010. Chronic mastitis in small dairy cattle herds in Muang Khon Kaen. The Thai Journal of Veterinary Medicine. 40: 265-272.
Kim, K. J., H. H. Yu, S. I. Jeong, J. D. Cha, S. M. Kim, and Y. O. You. 2004. Inhibitory effects of Caesalpinia sappan on growth and invasion of methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology. 91: 81-87.
Kima, P. E., and M. E. Rasche. 2004. Sex determination using PCR. Biochemistry and Molecular Biology Education. 32: 115-119.
Lee, K. J., B. H. Jun, J. Choi, Y. I. Lee, J. Joung, and Y. S. Oh. 2007. Environmentally friendly synthesis of organic-soluble silver nanoparticles for printed electronics. Nanotechnology. 18: 335601.
Makovec, J. A., and P. L. Ruegg. 2003. Antimicrobial resistance of bacteria isolated from dairy cow milk samples submitted for bacterial culture: 8,905 samples (1994–2001). Journal of the American Veterinary Medical Association. 222: 1582-1589.
Michael, A., L. Edling, and P. Labare. 2003. The efficacy of silver as a bactericidal agent: advantages, limitations and considerations for future use. Journal of Water Infrastructure, Ecosystems and Society. 52: 407-416.
Mickymaray, S. 2019. Efficacy and mechanism of traditional medicinal plants and bioactive compounds against clinically important pathogens. Antibiotics. 8: 257.
Moteriya, P., and S. Chanda. 2020. Green synthesis of silver nanoparticles from Caesalpinia pulcherrima leaf extract and evaluation of their antimicrobial, cytotoxic and genotoxic potential (3-in-1 system). Journal of Inorganic and Organometallic Polymers and Materials. 30: 3920-3932.
Nirmal, N. P., M. S. Rajput, R. G. Prasad, and M. Ahmad. 2015. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pacific Journal of Tropical Medicine. 8: 421-430.
Oliver, S. P., B. E. Gillespie, M. J. Lewis, S. J. Ivey, R. A. Almeida, D. A. Luther, and H. H. Dowlen. 2001. Efficacy of a new premilking teat disinfectant containing a phenolic combination for the prevention of mastitis. Journal of Dairy Science. 84: 1545-1549.
Orwa, J., M. Mantel, M. Mugerwa, S. Brownie, E. S. Pallangyo, L. Mwasha, K. Isangula, L. Subi, S. Mrema, and G. Edwards. 2019. Maternal healthcare services use in Mwanza Region, Tanzania: a cross-sectional baseline survey. BMC Pregnancy and Childbirth. 19: 1-11.
Pal, S., Y. K. Tak, and J. M. Song. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology. 73: 1712-1720.
Pattananandecha, T., S. Apichai, J. Julsrigival, F. Ogata, N. Kawasaki, and C. Saenjum. 2022. Antibacterial activity against foodborne pathogens and inhibitory effect on anti-inflammatory mediators’ production of brazilin-enriched extract from Caesalpinia sappan Linn. Plants. 11: 1698.
Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of natural products. 63: 1035-1042.
Radzig, M. A., O. A. Koksharova, and I. A. Khmel. 2010. Antibacterial effects of silver ions on growth of gram-negative bacteria and biofilm formation. Microbiology and Viralogy. 24: 194-199.
Russell, A. D., and W. B. Hugo. 1994. 7 antimicrobial activity and action of silver. Progress in Medicinal Chemistry. 31: 351-370.
Sampimon, O. C., H. W. Barkema, I. M. Berends, J. Sol, and T. J. Lam. 2009. Prevalence and herd-level risk factors for intramammary infection with coagulase-negative staphylococci in Dutch dairy herds. Veterinary Microbiology. 134: 37-44.
Safitri, R., D. Kartikasari, I. Sulistiyorini, D. M. Malini, M. Ghozali, and A. Melani. 2020. Antimicrobial activity of sappan wood (Caesalpinia sappan L) extract against Haemophilus influenza and its iron chelation activities in vitro. University of Agricultural Sciences and Veterinary Medicine Lasi. 74: 20-28.
Salari, Z., F. Danafar, S. Dabaghi, and S. A. Ataei. 2016. Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. Journal of Saudi Chemical Society. 20: 459-464.
Smith, K. L., and J. S. Hogan. 1993. Environmental mastitis. Veterinary Clinics of North America: Food Animal Practice. 9: 489-498.
Swathy, J. R., M. U. Sankar, A. Chaudhary, S. Aigal, and T. Pradeep. 2014. Antimicrobial silver: an unprecedented anion effect. Scientific Reports. 4: 7161.
Tiwari, B. K., V. P. Valdramidis, C. P. O’Donnell, K. Muthukumarappan, P. Bourke, and P. J. Cullen. 2009. Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry. 57: 5987-6000.
Tiwari, R., S. Chakraborty, K. Dhama, S. Rajagunatan, and V. Singh. 2013. Antibiotics resistance an emerging health problem: causes, worries, challenges and solution: a review. International Journal of Current Research. 5: 1880-1892.
Todtong, P., T. Nilnont, and R. Pilachai. 2021. Prevalence and antimicrobial susceptibility on bacterial pathogens of clinical and subclinical mastitis in lactating cows in Udon Thani Province. KKU Veterinary Journal. 31.
Vij, T., P. P. Anil, R. Shama, K. K. Dash, R. Kalsi, V. K. Pandey, E. Harsányi, B. Kovács, and A. M. Shaikh. 2023. A comprehensive review on bioactive compounds found in Caesalpinia sappan. Molecules. 28: 6247.
Vissers, M. M. M., and F. Driehuis. 2009. Chapter 1, On-farm hygienic milk production. Milk processing and quality management. Blackwell Publishing Ltd., UK.
Xia, Z., D. Li, Q. Li, and Y. Zhang. 2017. Simultaneous determination of brazilin and protosappanin B in Caesalpinia sappan by ionic-liquid dispersive liquid-phase microextraction method combined with HPLC. Chemistry Central Journal. 11: 114.
Xu, H. X., and S. F. Lee. 2004. The antibacterial principle of Caesalpina sappan. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 18: 647-651.
Yanuartono, Y., A. Nururrozi, S. Indarjulianto, H. Purnamaningsih, and D. Ramandani. 2020. The benefits of teat dipping as prevention of mastitis. Journal of Livestock Science and Production. 4: 231-249.