การประเมินศักยภาพของสารสกัดจากกากกาแฟเพื่อเป็นทางเลือกทดแทนยาปฏิชีวนะกระตุ้นการเจริญเติบโตในไก่เนื้อ

Main Article Content

ภัชรีย์ ศรีนวล
ชนิดาภา แก่นมณี
พิมพร คำทวี
อรณี ศรีนวล
นเรศ ปินตาเลิศ
มงคล ยะไชย
วรรณพร ทะพิงค์แก

บทคัดย่อ

สารสกัดจากกากกาแฟ (Spent coffee ground extracts; SCGE) อุดมไปด้วยกรดคลอโรจีนิก และเมลาโนดินเหมาะสำหรับเสริมในอาหารสัตว์เพื่อปรับปรุงประสิทธิภาพการผลิต การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อศึกษาผลของการเสริม SCGE ในอาหารต่อประสิทธิภาพการเจริญเติบโต ค่าโลหิตวิทยา ปริมาณเชื้อจุลินทรีย์ในไส้ตัน และสัณฐานวิทยาของลำไส้เล็กในไก่เนื้อ โดยทำการสุ่มลูกไก่เนื้อพันธุ์ Ross 308 อายุ 1 วัน จำนวน 500 ตัว แบ่งเป็น 5 กลุ่มอาหารทดลอง แต่ละกลุ่มมี 10 ซ้ำ ซ้ำละ 10 ตัว ประกอบด้วย อาหารที่ไม่มียาปฏิชีวนะเป็นกลุ่มควบคุมเชิงลบ (Negative control; NC) อาหารพื้นฐานเสริมด้วยยาปฏิชีวนะกระตุ้นการเจริญเติบโตเป็นกลุ่มควบคุมเชิงบวก (Positive control; PC) และ อาหาร NC ที่เสริมด้วย SCGE ที่ระดับ 0.5, 1.0 และ 2.0 ก./กก. อาหาร ตามลำดับ ผลการศึกษาชี้ให้เห็นว่า กลุ่ม SCGE และ PC มีน้ำหนักตัวสุดท้ายและอัตราการเจริญเติบโต (Average Daily Gain; ADG) สูงกว่ากลุ่ม NC (P<0.05) ทั้งนี้กลุ่ม SCGE ทุกกลุ่มมีประสิทธิภาพการเปลี่ยนอาหารเป็นน้ำหนักตัว (Feed Conversion Ratio; FCR) ดีกว่ากลุ่ม PC และ NC (P<0.05) ปริมาณเชื้อ Lactobacillus spp. ในไส้ตันของกลุ่ม SCGE1.0 และ SCGE2.0 มากกว่า (P<0.05) กลุ่ม PC โดยกลุ่ม NC และ SCGE0.5 มีค่าน้อยที่สุด (P<0.05) กิจกรรมของเอนไซม์ Alanine aminotransferase (ALT) ของกลุ่ม SCGE0.5 SCGE1.0 และ SCGE2.0 มีค่าต่ำกว่ากลุ่ม NC (P<0.05) ส่วนของ Aspartate transaminase (AST) ของ SCGE2.0 มีค่าน้อยที่สุด (P<0.05) ค่าความสูงของวิลไลและความลึกของคริปท์ของลำไส้เล็กส่วนกลางของกลุ่ม SCGE มากกว่า กลุ่ม NC และ PC ดังนั้น การเสริม SCGE ที่ระดับ 2.0 ก./กก. ช่วยปรับปรุงน้ำหนักสุดท้าย ADG FCR และสมดุลของเชื้อในไส้ตันได้ จึงถือว่ามีศักยภาพในการใช้ทดแทนยาปฏิชีวนะในอาหารไก่เนื้อได้

Article Details

บท
บทความวิจัย (research article)

References

Anee, I. J., S. Alam, R. A. Begum, R. M. Shahjahan, and A. M. Khandaker. 2021. The role of probiotics on animal health and nutrition. The Journal of Basic and Applied Zoology. 82: 1-16.

Ashour, E. A., M. E. A. El-Hack, M. E. Shafi, W. Y. Alghamdi, A. E. Taha, A. A. Swelum, V. Tufarelli, Z. S. Mulla, W. R. El-Ghareeb, and M. T. El-Saadony. 2020. Impacts of green coffee powder supplementation on growth performance, carcass characteristics, blood indices, meat quality and gut microbial load in broilers. Agriculture. 10(10): 457.

Azuan, A., Z. Mohd, M. Hasmadi, N. Rusli, and M. Zainol. 2020. Physicochemical, antioxidant and sensory characteristics of cookies supplemented with different levels of spent coffee ground extract. Food Research. 4(4): 1181-1190.

Bevilacqua, E., V. Cruzat, I. Singh, R. B. Rose’Meyer, S. K. Panchal, and L. Brown. 2023. The potential of spent coffee grounds in functional food development. Nutrients. 15(4): 994.

Bhandarkar, N. S., L. Brown, and S. K. Panchal. 2019. Chlorogenic acid attenuates high-carbohydrate, high-fat diet–induced cardiovascular, liver, and metabolic changes in rats. Nutrition Research. 62: 78-88.

Bhandarkar, N. S., P. Mouatt, P. Goncalves, T. Thomas, L. Brown, and S. K. Panchal. 2020. Modulation of gut microbiota by spent coffee grounds attenuates diet‐induced metabolic syndrome in rats. The FASEB Journal. 34(3): 4783-4797.

Brand-Williams, W., M.-E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology. 28(1): 25-30.

Burniol-Figols, A., K. Cenian, I. V. Skiadas, and H. N. Gavala. 2016. Integration of chlorogenic acid recovery and bioethanol production from spent coffee grounds. Biochemical Engineering Journal. 116: 54-64.

Campos-Vega, R., G. Loarca-Piña, H. A. Vergara-Castañeda, and B. D. Oomah. 2015. Spent coffee grounds: A review on current research and future prospects. Trends in Food Science and Technology. 45(1): 24-36.

Carta, S., E. Tsiplakou, P. Nicolussi, G. Pulina, and A. Nudda. 2022. Effects of spent coffee grounds on production traits, haematological parameters, and antioxidant activity of blood and milk in dairy goats. Animal. 16(4): 100501.

Chen, F., H. Zhang, N. Zhao, X. Yang, E. Du, S. Huang, W. Guo, W. Zhang, and J. Wei. 2021. Effect of chlorogenic acid on intestinal inflammation, antioxidant status, and microbial community of young hens challenged with acute heat stress. Animal Science Journal. 92(1): e13619.

Chen, J., Y. Li, B. Yu, D. Chen, X. Mao, P. Zheng, J. Luo, and J. He. 2018a. Dietary chlorogenic acid improves growth performance of weaned pigs through maintaining antioxidant capacity and intestinal digestion and absorption function. Journal of Animal Science. 96(3): 1108-1118.

Chen, J., B. Yu, D. Chen, Z. Huang, X. Mao, P. Zheng, J. Yu, J. Luo, and J. He. 2018b. Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. The Journal of Nutritional Biochemistry. 59: 84-92.

de Cosío-Barrón, A. C. G., A. M. Hernández-Arriaga, and R. Campos-Vega. 2020. Spent coffee (Coffea arabica L.) grounds positively modulate indicators of colonic microbial activity. Innovative Food Science and Emerging Technologies. 60: 102286.

de Otálora, X. D., R. Ruiz, I. Goiri, J. Rey, R. Atxaerandio, D. San Martin, M. Orive, B. Iñarra, J. Zufia, J. Urkiza, and A. García-Rodríguez. 2020. Valorisation of spent coffee grounds as functional feed ingredient improves productive performance of Latxa dairy ewes. Animal Feed Science and Technology. 264: 114461.

Durán-Aranguren, D. D., S. Robledo, E. Gomez-Restrepo, J. W. Arboleda Valencia, and N. A. Tarazona. 2021. Scientometric overview of coffee by-products and their applications. Molecules. 26(24): 7605.

Farahat, M., D. Ibrahim, A. Kishawy, H. Abdallah, A. Hernandez-Santana, and G. Attia. 2021. Effect of cereal type and plant extract addition on the growth performance, intestinal morphology, caecal microflora, and gut barriers gene expression of broiler chickens. Animal. 15(3): 100056.

Geremu, M., Y. B. Tola, and A. Sualeh. 2016. Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chemical and Biological Technologies in Agriculture. 3: 1-6.

Giannenas, I., D. Tontis, E. Tsalie, E. Chronis, D. Doukas, and I. Kyriazakis. 2010. Influence of dietary mushroom Agaricus bisporus on intestinal morphology and microflora composition in broiler chickens. Research in Veterinary Science. 89(1): 78-84.

Iriondo-DeHond, A., F. S. Cornejo, B. Fernandez-Gomez, G. Vera, E. Guisantes-Batan, S. G. Alonso, M. I. S. Andres, S. Sanchez-Fortun, L. Lopez-Gomez, and J. A. Uranga. 2019. Bioaccesibility, metabolism, and excretion of lipids composing spent coffee grounds. Nutrients. 11(6): 1411.

Lamuela‐Raventós, R. M. 2018. Folin–Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. Measurement of antioxidant activity & capacity: recent trends and applications. 107-115.

Latimer, K. S. 2011. Duncan and Prasse's Veterinary Laboratory Medicine: Clinical Pathology. John Wiley & Sons.

Li, Y.-Q., Y. Zhang, D.-Y. Bai, Y.-H. Liu, X.-L. He, K. Ito, K.-X. Liu, H.-Q. Tan, W.-R. Zhen, and C. Zhang. 2023. Effects of dietary chlorogenic acid on ileal intestinal morphology, barrier function, immune factors and gut microbiota of broilers under high stocking density stress. Frontiers in Physiology. 14: 1169375.

Liu, H., P. Chen, X. Lv, Y. Zhou, X. Li, S. Ma, and J. Zhao. 2022a. Effects of chlorogenic acid on performance, anticoccidial indicators, immunity, antioxidant status, and intestinal barrier function in coccidia-infected broilers. Animals. 12(8): 963.

Liu, H., X. Li, S. Shi, Y. Zhou, K. Zhang, Y. Wang, and J. Zhao. 2022b. Chlorogenic acid improves growth performance and intestinal health through autophagy-mediated nuclear factor erythroid 2-related factor 2 pathway in oxidatively stressed broilers induced by dexamethasone. Poultry Science. 101(9): 102036.

Liu, W., P. Zha, L. Guo, Y. Chen, and Y. Zhou. 2023a. Effects of different levels of dietary chlorogenic acid supplementation on growth performance, intestinal integrity, and antioxidant status of broiler chickens at an early age. Animal Feed Science and Technology. 297: 115570.

Liu, Y., Y. Zhang, D. Bai, Y. Li, X. He, K. Ito, K. Liu, H. Tan, W. Zhen, and B. Zhang. 2023b. Dietary supplementation with chlorogenic acid enhances antioxidant capacity, which promotes growth, jejunum barrier function, and cecum microbiota in broilers under high stocking density stress. Animals. 13(2): 303.

Low, C. X., L. T.-H. Tan, N.-S. Ab Mutalib, P. Pusparajah, B.-H. Goh, K.-G. Chan, V. Letchumanan, and L.-H. Lee. 2021. Unveiling the impact of antibiotics and alternative methods for animal husbandry: A review. Antibiotics. 10(5): 578.

Machado, F., M. A. Coimbra, M. D. d. Castillo, and F. Coreta-Gomes. 2023. Mechanisms of action of coffee bioactive compounds–A key to unveil the coffee paradox. Critical Reviews in Food Science and Nutrition. 1-23.

Mitraka, G.-C., K. N. Kontogiannopoulos, M. Batsioula, G. F. Banias, and A. N. Assimopoulou. 2021. Spent coffee grounds’ valorization towards the recovery of caffeine and chlorogenic acid: A response surface methodology approach. Sustainability. 13(16): 8818.

Moreira, A. S., F. M. Nunes, M. R. Domingues, and M. A. Coimbra. 2012. Coffee melanoidins: structures, mechanisms of formation and potential health impacts. Food and Function. 3(9): 903-915.

Munir, A., G. A. Javed, S. Javed, and N. Arshad. 2022. Levilactobacillus brevis from carnivores can ameliorate hypercholesterolemia: In vitro and in vivo mechanistic evidence. Journal of Applied Microbiology. 133(3): 1725-1742.

Nasr, A. Y. 2014. Protective effect of aged garlic extract against the oxidative stress induced by cisplatin on blood cells parameters and hepatic antioxidant enzymes in rats. Toxicology Reports. 1: 682-691.

NRC. 1994. Nutrient Requirements of Poultry: Ninth Revised Edition. National Academies Press.

Pérez-Burillo, S., S. Pastoriza, A. Fernández-Arteaga, G. n. Luzón, N. Jiménez-Hernández, G. D’Auria, M. P. Francino, and J. A. n. Rufián-Henares. 2019. Spent coffee grounds extract, rich in mannooligosaccharides, promotes a healthier gut microbial community in a dose-dependent manner. Journal of Agricultural and Food Chemistry. 67(9): 2500-2509.

Ponnampalam, E. N., A. Kiani, S. Santhiravel, B. W. Holman, C. Lauridsen, and F. R. Dunshea. 2022. The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: Antioxidant action, animal health, and product quality Invited review. Animals. 12(23): 3279.

Severini, C., A. Derossi, and A. G. Fiore. 2017. Ultrasound-assisted extraction to improve the recovery of phenols and antioxidants from spent espresso coffee ground: a study by response surface methodology and desirability approach. European Food Research and Technology. 243: 835-847.

Shi, H., L. Dong, J. Jiang, J. Zhao, G. Zhao, X. Dang, X. Lu, and M. Jia. 2013. Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway. Toxicology. 303: 107-114.

Srinual, O., T. Moonmanee, C. Lumsangkul, H. V. Doan, M. Punyatong, M. Yachai, T. Chaiyaso, K. Kongtong, and W. Tapingkae. 2022. Can red yeast (Sporidiobolus pararoseus) be used as a novel feed additive for mycotoxin binders in broiler chickens?. Toxins. 14(10): 678.

Vijayalaxmi, S., S. Jayalakshmi, and K. Sreeramulu. 2015. Polyphenols from different agricultural residues: extraction, identification and their antioxidant properties. Journal of Food Science and Technology. 52: 2761-2769.

Wang, W.-w., H.-j. Jia, H.-j. Zhang, J. Wang, H.-y. Lv, S.-g. Wu, and G.-h. Qi. 2019. Supplemental plant extracts from flos lonicerae in combination with baikal skullcap attenuate intestinal disruption and modulate gut microbiota in laying hens challenged by Salmonella pullorum. Frontiers in Microbiology. 10: 1681.

Zha, P., L. Wei, W. Liu, Y. Chen, and Y. Zhou. 2023. Effects of dietary supplementation with chlorogenic acid on growth performance, antioxidant capacity, and hepatic inflammation in broiler chickens subjected to diquat-induced oxidative stress. Poultry Science. 102(3): 102479.

Zhang, X., Q. Zhao, X. Ci, S. Chen, Z. Xie, H. Li, H. Zhang, F. Chen, and Q. Xie. 2020. Evaluation of the efficacy of chlorogenic acid in reducing small intestine injury, oxidative stress, and inflammation in chickens challenged with Clostridium perfringens type A. Poultry Science. 99(12): 6606-6618.

Zheng, L., S. Oh, J. Jeon, B. Moon, H. Kwon, S. Lim, B. An, and C. Kang. 2012. The dietary effects of fermented Chlorella vulgaris (CBT®) on production performance, liver lipids and intestinal microflora in laying hens. Asian-Australasian Journal of Animal Sciences. 25(2): 261.

Zheng, Y., J. Liu, M. Cao, J. Deng, and J. Kou. 2016. Extrication process of chlorogenic acid in Crofton weed and antibacterial mechanism of chlorogenic acid on Escherichia coli. Journal of Environmental Biology. 37(5): 1049.