The study of factors affecting mechanical properties of 3D printing with 6-axis robotic arm
The study of factors affecting mechanical properties of 3D printing with 6-axis robotic arm
Keywords:
Additive Manufacturing (AM), 3D printing, Robotic arm, Taguchi experimental design methodAbstract
The objective of this research is to study the fabrication of 3D printing system with a six-axis robot arm with an ABS plastic fiber feeding system controlled with a programmable logic controller. The study has been studied the variables affecting the mechanical properties of the percentage adhesion of printed plastics by using the Taguchi experimental design method with the L9 (33) orthogonal array and three control factors with 3 levels: 180, 190, 200 pulse signal, and 0.9, 1.0, 1.1 mm plastic fiber spacing and fiber melting temperature 190, 200, 210 degrees Celsius. The proposed approach of the study confirmed that the optimal factor results based on the highest mean of signal to-noise ratio (S/N) ratio level are 200 pulses and 0.9 mm plastic fiber spacing, and heat for plastic fiber melting 210 °C, and the most elongated percentage at 3.422%.
References
Ahmad M.N., Rahman M.H.B.A. and Maidin N.A. (2019). Optimization on surface roughness of fused deposition modelling (FDM) 3D printed parts using Taguchi approach. Lecture Notes in Mechanical Engineering. Chapter: Intelligent Manufacturing and Mechatronics. Publishing: Springer Nature. 230-243.
Carabina G., Scalera L., Wongratanaphisanb T. and Vidonia R. (2021). An energy-efficient approach for 3D printing with a Linear Delta Robot equipped with optimal springs. Robotics and Computer-Integrated Manufacturing. 67:102045.
Lan L., Jianping S., Kaiwei M., Jing J., Peng W., Huixin L., Yi C., Xingsong W. and Qing J. (2021). Robotic in situ 3D bio-printing technology for repairing large segmental bone defects. Journal of Advanced Research. 30: 75-84.
Luan X.Y., Chengzhe L., Liujian L. and Jianzhong F. (2018). Self-monitoring continuous carbon fiber reinforced thermoplastic based on dual material three-dimensional printing integration process. Carbon. 140: 100-111.
Moza Z., Kitsakis K., Kechagia J. and Mastorakis N. (2015). Optimizing dimensional accuracy of fused filament fabrication using Taguchi design. Recent Researches in Electrical and Computer Engineering. June 2015: 110-114.
Munproma R. and Limtasiri L. (2019). Optimization of stereolithographic 3D printing parameters using Taguchi method for improvement in mechanical properties. Materials Today: Proceedings. 17: 1768–1773.
Parandoush P. and Lin. D. (2017). A review on additive manufacturing of polymer-fiber composites. Composite Structures. 182: 36-53.
Tan J. C. and Low H. Y. (2018). Embedded electrical tracks in 3D printed objects by fused filament fabrication of highly conductive composites. Additive Manufacturing. 23: 294-302.
Thasana W., Kaewdook D., Khantiyanuwat P., Boonsiri N. and Yoshida Y. (2015). Study of 3D Printer for Educational Use, paper presented in the 6th TSME International Conference on Mechanical Engineering (ICoME 2015), 16-18 December 2015, Phetchaburi, Thailand.
Tim A., Osswald J. P. and Kattinger J. (2018). Fused filament fabrication melting model. Additive Manufacturing. 22: 51-59.
Downloads
Published
Versions
- 2024-02-19 (2)
- 2022-08-30 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Agriculture and Technology Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารทดสอบระบบ ThaiJo2 ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรงซึ่งกองบรรณาธิการวารสาร ไม่จำเป็นต้องเห็นด้วย หรือร่วมรับผิดชอบใดๆ
บทความ ข้อมูล เนื่อหา รูปภาพ ฯลฯ ที่ได้รับการดีพิมพ์ในวารสารทดสอบระบบ ThaiJo2 ถือเป็นลิขสิทธิ์ของวารสารทดสอบระบบ ThaiJo2 หากบุคคลหรือหน่วยงานใดต้องการนำทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่หรือเพื่อกระทำการใดๆ จะต้องได้รับอนุญาตเป็นลายลักอักษรณ์จากวารสารทดสอบระบบ ThaiJo2 ก่อนเท่านั้น