The potential of nano-zinc oxide and crude herbal extracts for inhibition of Pseudoperonospora cubensis

Authors

Keywords:

Downy mildew, Antifungal activity, Zinc oxide nanoparticles, Crude herbal extracts

Abstract

This research aimed to synthesize and study the antifungal activity against Pseudoperonospora cubensis, the cause of downy mildew in melons, which significantly damages the yield, using nano zinc oxide calcined at 300°C and 500°C and four types of crude herbal extracts: garlic, galangal, turmeric, and fingerroot. Results of the specific characteristics analysis of nano zinc oxide using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and ultraviolet-visible spectroscopy (UV-Vis) techniques were provided. It was shown that nano zinc oxide has a hexagonal wurtzite crystal structure, with an average particle size of 32.02±4.06 and 48.18±10.02 nm, respectively. The antifungal activity showed that nano zinc oxide inhibited fungal growth by 63.09±0.18% and 59.73±1.40%, respectively. Among the crude plant extracts, the fingerroot extract exhibited the highest antifungal efficacy, inhibiting fungal growth by 55.57±2.11%. The combination of nano zinc oxide calcined at 300°C and fingerroot extract at a ratio of 1:5 with a concentration of 3,000 µg/mL inhibited fungal growth by 81.74±1.12%. These findings demonstrate that synthesizing nano zinc oxide combined with fingerroot extract significantly enhances the inhibition of Pseudoperonospora cubensis, providing a promising approach for controlling downy mildew in melons

References

Ahmad, W. & Kalra, D. (2020). Green synthesis, characterization and antimicrobial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. Journal of King Saud University-Science, 32, 2358-2364. https://doi.org/10.1016/j.jksus.2020.03.014

Ali, M., Wang, X., Haroon, U., Chaudhary, H. J., Kamal, A., Ali, Q., Saleem, M. H., Usman K., Alatawi, A., Ali, S. & Munis, M. F. H. (2022). Antifungal activity of zinc nitrate derived nano ZnO fungicide synthesized from Trachyspermum ammi to control fruit rot disease of grapefruit. Ecotoxicology and Environmental Safety, 233, 113311. https://doi.org/10.1016/j.ecoenv.2022.113311

Arciniegas-Grijalba, P. A., Patiño-Portela, M. C. & Rodríguez-Páez, J. (2017). ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci, 7, 225-241. https://doi.org/10.1007/s13204-017-0561-3

Asmat-Campos, D., Rojas-Jaimes, J., Simbrón de la Cruz, M. & Montes de Oca-Vásquez, G. (2024). Enhanced antimicrobial efficacy of biogenic ZnO nanoparticles through UV-B activation: A novel approach for textile garment. Heliyon, 10, e25580. https://doi.org/10.1016/j.heliyon.2024.e25580

Bashir, S., Awan, M. S., Farrukh, M. A., Naidu, R., Khan S. A., Rafique, N., Ali, S., Hayat, I., Hussain, I. & Khan, M. Z. (2022). In-vivo (Albino Mice) and in-vitro assimilation and toxicity of zinc oxide nanoparticles in food materials. International Journal of Nanomedicine, 17, 4073–4085. https://doi.org/10.2147/IJN.S372343

Boonnaum, P., Kabae, N., Hayeemasalaeh, R., Marde, W., Suwannarat, P., & Noipha, K. (2021). Phytochemical study, total phenolic, and antioxidant activity of Boesenbergia pandurata Holtt extract for the development of paper hand soap. Research and Development Health System Journal, 14(3), 152–165. https://he02.tci-thaijo.org/index.php/RDHSJ/article/view/253362 (In Thai)

Chuenchan, W., Yooboriboon, S., & Boonsong, S. (2022). Efficiency of Herbal Crude Extracts to Against Phytophthora parasitica. Journal of BSRU-Research and Development Institute, 7(1), 243–252. (In Thai)

De Peres, M. L., Delucis, R. A., Amico, S. C. & Gatto, D. A. (2019). Zinc oxide nanoparticles from microwave-assisted solvothermal process: Photocatalytic performance and use for wood protection against xylophagous fungus. Nanomaterials and Nanotechnology, 9, 1-8. https://doi.org/10.1177/1847980419876201

Farungsang, N., Jamkratoke, S., Rattanakreetakul, C., Farungsang, U., & Leksomboon, C. (2005, October). Effects of fingerroot, ginger and tumeric extracts unfavourable for plant pathogenic fungi [Paper presentation]. Thai biodiversity conference: Everything is interconnected, Nakhon Ratchasima, Thailand. (In Thai)

Hasany, S. F., Hussain, S., Usman, Ali S. M., Abdul-Kadhim, W. & Amir, M. (2020). ZnO nanostructures: comparative synthetic and characterization studies. Micro & Nano Letters, 15(14), 972–976. https://doi.org/10.1049/mnl.2019.0795

Kantong, P., Kome-ngam, M., & Rungrojchaipon, P. (2022). Catalytic Study of Calcium Silicate from Duck Eggshell for the Synthesis of Glycerol Carbonate from Glycerol and Urea. Journal of Science Ladkrabang, 31(1), 1–16. https://li01.tci-thaijo.org/index.php/science_kmitl/article/view/245502 (In Thai)

Kenyota, N., & Laokul, P. (2019). Preparation of zinc oxide hollow spheres and their application as photoanode in dye sensitized solar cell. Burapha Science Journal, 24(3), 913-928. https://science.buu.ac.th/ojs246_old/index.php/sci/article/view/2631 (In Thai)

Kumlong, S. & Kumpun, N. (2017). Inhibition of fungal growth on rubber sheet by herbal extracts. RMUTI Journal Science and Technology, 10(2), 107–118. https://ph01.tci-thaijo.org/index.php/rmutijo/article/ view/96533 (In Thai)

Machana, S., Thammanu, K., Weerapol, Y., Kunajet, S., Vongsak, B., & Pattaranich, C. (2019). Investigation of physical and chemical characteristics of stingless bee honey in different locations and product development. Burapha University. http://dspace.lib.buu.ac.th/xmlui/handle/1234567890/3707

Mekkamol, S., Wichittrakulthavorn, K., & Suwanpornskul, R. (2016). Effects of potassium silicate in controlling powdery mildew and downy mildew of Japanese cucumber under plastic house and farmer's field conditions. Journal of Agricultural Research and Communications, 32(1), 51-59. https://li01.tci-thaijo.org/index.php/joacmu/article/view/245584 (In Thai)

Nasiri, S., Rabiei, M., Palevicius, A., Janusas, G., Vilkauskas, A., Nutalapati, V. & Monshi, A. (2023). Modified Scherrer equation to calculate crystal size by XRD with high accuracy, examples Fe2O3, TiO2 and V2O5. Nano Trends, 3, 100015. https://doi.org/10.1016/j.nwnano.2023.100015

Navas, D., Ibañez, A., González, I., Palma J. L. & Dreyse, P. (2020). Controlled dispersion of ZnO nanoparticles produced by basic precipitation in solvothermal processes. Heliyon, 6, 1-9. https://doi.org/10.1016/j.heliyon.2020.e05821

Patitungkho, S. & Patitungkho, K. (2014). Synthesis and Biological Investigation of Nano-Organic and Nano-Organometallic Agents. KKU Science. Journal., 42(3), 612-623. https://search.asean-cites.org/article.html? b3BlbkFydGljbGUmaWQ9MTQyMzY2 (In Thai)

Sakayaroj, S., Rugthaworn, P., Sukatta, U., Klinsuknon, K., Khacharat, L., Presunthian, N., & Thongkum, T. (2022, February 21-23). The efficacy of green synthesized ZnO nanoparticles from Litchi peel on the growth of fungi causing postharvest decay of fruit [Paper presentation]. Proceedings of 60th Kasetsart University Annual Conference: Science, Engineering and Architecture, Agro-Industry, Natural Resources and Environment, Pathum Thani, Thailand. (In Thai)

Sangchay, W. & Ubolchollakhat, K. (2016). Photocatalytic and antibacterial activity of ZnO powders prepared via sol-gel method. KKU Engineering Journal, 43(1), 21-25. https://doi.org/10.14456/kkuenj.2016.4

Sarvalkar, P. D., Kamble, S. S., Powar, P. S., Kakade, S. S., Jamadar, A. S., Thounaojam, P., Patil, M. S., Kalake, S. V., Nimbalkar, M. S. & Sharma, K. K. K. (2024). Synthesized rGO/f-MWCNT-architectured 1-D ZnO nanocomposites for azo dyes adsorption, photocatalytic degradation, and biological applications. Catalysis Communications, 187, 106846. https://doi.org/10.1016/j.catcom.2024.106846

Sehawong, W., Subepang, S., & Aroonluk, S. (2022). The efficacy of herbal extract to control onion twister disease caused by Colletotrichum gloeosporioides fungal pathogen. YRU Journal of Science and Technology, 7(2), 35–42. https://li01.tci-thaijo.org/index.php/yru_jst/article/view/252261/174063

Somrit, R., Koonnasoot, W., Phonkhokkong, T., Tiemtree, P., Somame, S., & Saibut, S. (2023). Effect of calcination temperature on physicochemical properties and antifungal activity of nano-zinc oxide prepared by sol-gel method. Journal of Science and Technology, Ubon Ratchathani University, 25(1). 72-80. https://li01.tci-thaijo.org/index.php/sci_ubu/article/view/256020 (In Thai)

Sutthisa, W., Tapkhumram, P., Kanchanarat, W., & Arimastu, P. (2014). Efficiency of Thai medicinal plant extract to control Colletotrichum sp., a causal agent of mango anthracnose. Khon Kaen Agricultural. Journal., 42(1), 665–670. https://so06.tci-thaijo.org/index.php/rdibsru/article/view/255753 (In Thai)

Thamsatit, W., Sukonthamut, S., & Thanaboripat, D. (2023). Screening of effective herbs for controlling Phytopthora sp. isolated from durian in Chanthaburi Province and Chumphon Province. Journal of Science Ladkrabang, 26(2), 1–14. https://li01.tci-thaijo.org/index.php/science_kmitl/article/view/ 107556/85111 (In Thai)

Wonglom, P., Daengsuwan, W., & Sanpapao, A. (2020). Occurrence and disease incidence of muskmelon diseases cultivated in polyhouse system in southern Thailand. Khon Kaen Agricultural. Journal., 48(1), 1165-1172. https://agkb.lib.ku.ac.th/kku/search_detail/result/401863 (In Thai)

Published

2025-12-25

How to Cite

Koonnasoot, W. ., somrit, rattanaporn, Phonkhokkong, T. ., Samappito, J., Nongsee, K. ., Boonses, S. ., Suanmuamued, W. ., & Chaisuwan, S. . (2025). The potential of nano-zinc oxide and crude herbal extracts for inhibition of Pseudoperonospora cubensis . Agriculture & Technology RMUTI Journal, 6(3), 14–28. retrieved from https://li01.tci-thaijo.org/index.php/atj/article/view/263444