Effects of Potassium Silicate in Controlling Powdery Mildew and Downy Mildew of Japanese Cucumber under Plastic House and Farmer’s Field Conditions

Main Article Content

Sureewan Mekkamol
Kanjana Wichittrakulthavorn
Renu Suwanpornskul

Abstract

This experiment had its objectives in testing the efficiency of potassium silicate for controlling of powdery mildew and downy mildew under plastic house condition and farmer’s field condition. The test for spraying frequency of potassium silicate in controlling powdery mildew and downy mildew under plastic house condition were done in Japanese cucumber cv. Pretty swallow 279 by comprising of spraying frequency at once a week and twice a week. Analysis of percent disease index (% DI) were done in data collection after transplanting for 6 weeks. It was found that the spraying frequency at once a week and twice a week gave non significantly difference in percent disease index. Both of spraying frequencies could greatly reduce the percent disease index when compared with pain water spraying as control treatment in both powdery mildew and downy mildew trials. The disease index in the spraying frequency at once a week, twice a week and control treatment were 51.9, 48.4 and 64.6%, respectively for downy mildew, and 39.6, 35.9 and 57.3%, respectively for powdery mildew. The marketable yields of cv. Pretty swallow 279 were increased with significantly difference in both spraying frequencies when compared with control treatment. There was no significantly difference for the yields in the spraying frequency at once a week compared with spraying frequency at twice a week. Marketable yields in the spraying frequency at once a week, twice a week and control treatment were 6.8, 6.5 and 4.9 Kg/ Sq.m., respectively. The test under farmer’s filed condition comprised of 3 treatments i.e. 1. fungicides alternated with bio-fungicide (Bacillus subtilis) 2. potassium silicate  alternated with fungicides and bio-fungicide 3. potassium silicate entire growing season. It was found that all of the treatments gave non significantly different results in both percent disease index and marketable yields. The percent disease index in the treatment 1, 2 and 3 at 5 weeks after transplanting were 41.5, 35.9 and 43.5 %, respectively. The marketable yield of cv. Robato in the treatment 1, 2 and 3 were 8.5, 8.2 และ 7.9 Kg/ Sq.m., respectively. Potassium silicate could reduce fungicide spraying frequencies for downy mildew in farmer’s field condition

Article Details

Section
Research Articles

References

บุญรงศักดิ์ สายน้อย. 2545. การศึกษาเปรียบเทียบผลผลิตแตงกวาญี่ปุ่นเสียบยอดกับต้นตอน้ำเต้า ฟักทองพื้นเมือง แตงโม และแตงกวาญี่ปุ่นที่ไม่เสียบยอดภายในโรงเรือนไม้ไผ่ภายใต้ระบบ Fertigation. รายงานผลการวิจัย. มูลนิธิโครงการหลวง เชียงใหม่. 16 หน้า.
นุชนาฏ จงเลขา. 2549. คู่มือการป้องกันกำจัดศัตรูพืชแบบผสมผสานสำหรับเกษตรกร. มูลนิธิโครงการหลวง. เชียงใหม่. 94 หน้า.
วันวิสา เตชะวงค์ และ เกวลิน คุณาศักดากุล. 2558. การใช้น้ำออกซิไดซ์ที่ผ่านการแยกด้วยไฟฟ้าในการควบคุมเชื้อแบคทีเรียเพื่อยืดอายุการเก็บรักษาผักอินทรีย์. วารสารเกษตร 31(1): 39-46.
สันทัด โรจนสุนทร. 2551. โครงการนำร่องการพัฒนามาตรฐานคุณภาพอาหารเพื่อการส่งออก: กรณีศึกษามูลนิธิโครงการหลวง ระยะที่ 3. รายงานวิจัยฉบับสมบูรณ์. สำนักงานคณะกรรมการวิจัยแห่งชาติ. กรุงเทพมหานคร. 221 หน้า.
สุจริตพรรณ บุญมี และ เกวลิน คุณาศักดากุล. 2556. ผลของน้ำออกซิไดซ์ที่ผ่านการแยกด้วยไฟฟ้าต่อการลดโรคราแป้งในพืชวงศ์แตง. วารสารเกษตร 29(3): 257-266
Ashtiani, F. A., J. Kadir, A. Nasehi, S. R. H. Rahaghi and H. Sajili. 2012. Effect of silicon on rice blast disease. Pertanika Journal of Tropical Agricultural Science (S): 1-12.
Bekker, T. F., C. Kaiser and N. Labuschagne. 2009. The antifungal activity of potassium silicate and the role of pH against selected plant pathogenic fungi in vitro. South African Journal of Plant and Soil 26 (1): 55-57.
Belanger, R., P. A. Bowen, D. L. Ehret and J. G. Menzies. 1995. Soluble silicon: its role in crop and disease management of greenhouse crops. Plant Disease Journal 79(4): 336-339.
Cai, K., D. Gao, J. Chen and S. Luo. 2009. Probing the mechanisms of silicon-mediated pathogen resistance. Journal of the Society of Plant Signaling and Behavior 4(1): 1-3.
Cook, R. T. A., A. J. Inman and C. Billings. 1997. Identification and classification of powdery mildew anamorphs using light and scanning electron microscopy and host range data. Mycological Research 101(8): 975-1002.
Cook, R. T. A. and U. Braun. 2009. Conidial germination patterns in powdery mildews. Mycological Research 113(5): 616-636.
Datnoff, L. E., A. M. Brunings and F. A. Rodrigues. 2005. Silicon effects components of host resistance: an overview and implications for integrated disease management. pp. 19-24. In: Proceedings of silicon in agriculture conference, 22-26 October 2005. Uberlandia, Brazil.
Kanto, T., A. Miyoshi, T. Ogawa, K. Maekawa and M. Aino. 2006. Suppressive effect of liquid potassium silicate on powdery mildew of strawberry in soil. Journal of General Plant Pathology 72: 137-142.
Liang, Y. C., W. C. Sun, J. Si and V. Romheld. 2005. Effects of foliar and root applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathology 54: 678-685.
Menzies, J. G., D. L. Ehret, A. D. M. Glass and A. L. Samuels. 1991. The influence of silicon on cytological interactions between Sphaerotheca fuliginea and Cucumis sativa. Physiological and Molecular Plant Pathology 39: 403-414.
Menzies, J. G., P. Bowen and D. L. Ehret. 1992. Foliar application of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon and zucchini squash. Journal of the American Society for Horticultural Science 117(6): 902-995.
Mitre, V., I. Mitre, A. F. Sestras and R. E. Sestras. 2010. New products against apple scab and powdery mildew attack in organic apple production. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(3): 234-238.
Maloy, O. C. 1993. Plant Disease Control: Principles and Practice. John Wiley & Sons, Inc. New York. 346 p.
Moyer, C. and N. A. Peres. 2008. Evaluation of biofungicides for control of powdery mildew of gerbera daisy. Proc. Florida State Horticultural Society 121: 389-394.
Rachniyom, H and T. Jaenaksorn, 2008. Effect of soluble silicon and Trichoderma harzianum on the in vitro growth of Pythium aphanidermatum. Journal of Agricultural Technology 4 (2): 57-71.
Saberi, M. and S. R. Panah. 2014. The effect of safe materials in control of cucumber downy mildew under field condition. Indian Journal of Fundamental and Applied Sciences 5: 2231-2257.
Savory, E. A., L. L. Granke, L. M. Quesada-Ocampo, M. Varbanova, M. K. Hausbec and B. Day. 2011. The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Molecular Plant Pathology 12 (3): 217-226.
Shen, G. H., Q. H. Xue, M. Tang, Q. Chen, L. N. Wang, C. M. Duan, L. Xue and J. Zhao. 2010. Inhibitory effects of potassium silicate on five soil-borne phytopathogenic fungi in vitro. Journal of Plant Diseases and Protection 117 (4): 180-184.
Thomas, C. E., T. Inaba and Y. Cohen. 1987. Physiological specialization in Pseudoperonospora cubensis. Phytopathology 77: 1621-1624.
Wolff, S. A., I. Karoliussen, J. Rohloff and R. Strimbeck. 2012. Foliar application of silicon fertilizers inhibit powdery mildew development in greenhouse cucumber. Journal of Food, Agriculture & Environment 10(1): 355-359.