Predicted Equation in Live -Weight of Crossbred Swine Using Generalized Estimating Equation and Linear Mixed Effect Model
Main Article Content
Abstract
The data were collected 4 times during 64 – 70 weeks of age from 173 heads of crossbred swine (Landracc x Large White x Duroc Jersey). Dependent variable is (weight, kilogram) while 6 independent variables are live-weight heart girth (L1, centimeter), body length (L2, centimeter), age (age, week), shoulder width (W1, centimeter) , hump width (W2, centimeter) and belly width (W3, centimeter) respectively. Constructing predicted equation on average live - weight of crossbred swine using generalized estimating equation (GEE) was compared with linear mixed effect model. The results showed that in the GEE model, the intercept , heart girth(L1) , body length (L2) and hump width (W2) are highly related to live- weight at 0.01 significant level when mean deviance, Pearson chi-square/df and residual plot were considered using empirical standard error estimate and AR(1) correlation structure. The most appropriate predicted equation found is Y = -191.73 + 0.4292L1 + 2.8302L2 + 0.1684W2. In linear mixed effect model with random intercept, the estimated parameters using residual maximum likelihood (REML) gave the results close to the GEE method. Equation of the mixed effect is Yi = -191.16 + 0.4311L1 + 2.8271L2 + 0.1702W2 + 0i . Since the random variance, Var (
0i) , in each crossbred swine was not difference ,thus this linear predicted equation may also be used to predict the live-weight of an individual swine.
Article Details
References
วีรศักดิ์ ปัญญาพรวิทยา, ขวัญชัย เครือสุคนธ์, อ้อมฤทัย ทอกี่ และ ทวีศาสตร์ ตันกิติยานนท์. 2549. การประเมินประสิทธิภาพการสืบพันธุ์จากโปรแกรมสุขภาพโคนมระดับฝูงการศึกษาเปรียบเทียบ 3 ปี. เชียงใหม่สัตวแพทย์สาร. 4(2) : 107 – 115.
รักปัญญ์ ถนอมวงศ์วัฒนะ. 2546. สมการทำนายน้ำหนักมีชีวิตของสุกรลูกผสม. วารสารเกษตร. 19(2) : 160 – 161.
Hosmer, D.W. and Lemeshow, S. 2002. Applied Logistic Regression . 2nd ed. New York : John Wiley & Sons. 345 pp.
Kutner, M. K., Nachtsheim C.J., Neter J. and William L.I. 2005. Applied Linear Statistical Models. 5th ed. Mcgraw.Hill companies. 1396 pp.
Shoukri, M. M. and Chaudhary, M. A. 2007. Analysis of Correlated Data with SAS and R. Taylor &Francis Group,LLc. 295 pp.
Myers, R. H., Montgomery, D. and Vining, G. G. 2002. Generalized Linear Models. New York : John Wiley & Sons. 342 pp.