Development of High Accuracy Multiplex Real - time PCR Technique for Determining Sperm Sex Ratio in Dairy Bull Semen
Main Article Content
Abstract
Sperm sex ratio determination using PCR - based technique is widely validated on precise of X - and Y - chromosome purity in sex - sorted bovine semen. The aim of this study was to develop a technique for estimating sperm sex ratio by using a multiplex polymerase chain reaction (multiplex real - time PCR). The X and Y chromosome - specific markers, bovine proteolipid protein (PLP) gene and sex - determining region Y (SRY), were simultaneously quantified in a single tube. To quantify DNA products, Taqman probe -labeled fluorescence was used in the reaction i.e., PLP probe labeled HEX dye, and SRY probe labeled FAM dye. The reference DNA of male peripheral white blood cell (WBC) was used as a template for constructing the standard curve, which contained an equal ratio between X - chromosome and Y - chromosome. The standard curve of both PLP and SRY genes showed two linear equations for calculating the proportion of X - and Y - sperm ratio. The WBC standard curve indicated an average straight - line slope as - 3.330, representing high - efficiency (99.66 %) of the reaction to synthesize new DNA amplicons. Nine samples of bull semen, Y - sorted semen (Y = 90 %), semen samples with Y ratio in 80 %, 70 %, 60 %, 50 %, 40 %, 30 %, 20 %, and X - sorted semen (Y = 10 %), were prepared and quantified by using the multiplex real - time PCR technique. Two standard techniques (singleplex real - time PCR technique and multiplex droplet digital PCR technique (ddPCR)) were amplified X - and Y - chromosome specific genes and compared with the developed technique. Each sample was run in triplicate and calculated in percentage of Y sperm ratio. Results obtained from those three assays were not significantly different. Therefore, the multiplex real - time PCR assay in this study was cost - effective, reduce time - consuming, and providing an accurate estimation method.
Article Details
References
Amadesi, A., A. Frana, L.M. Gandini, V. Bornaghi, K. Parati, G. Bongioni, R. Puglisi and A. Galli. 2015. Comparison between primary sex ratio in spermatozoa of bulls and secondary sex ratio in the deriving offspring. Theriogenology 83(2): 199-205.
Blecher, S.R., R. Howie, S. Li, J. Detmar and L.M. Blahut. 1999. A new approach to immunological sexing of sperm. Theriogenology 52(8): 1309-1321.
Claassens, O.E., C.J.J. Oosthuizen, J. Brusnicky, D.R. Franken and T.F. Kruger. 1995. Fluorescent in situ hybridization evaluation of human Y-bearing spermatozoa separated by albumin density gradients. Fertility and Sterility 63(2): 417-418.
Colley, A., M. Buhr and S.P. Golovan. 2008. Single bovine sperm sex typing by amelogenin nested PCR. Theriogenology 70(6): 978-983.
Cray, N., M. Wagner, J. Hauer and E. Roti Roti. 2020. Technical note: Droplet digital PCR precisely and accurately quantifies sex skew in bovine semen. Journal of Dairy Science 103(7): 6698-6705.
Dumrongsri, S., T. Khamlor, P. Pongpiachan and K. Sringarm. 2016. Determination of male-specific gene expression of White Lamphun cattle semen treated by monoclonal antibodies. Indian Journal of Animal Sciences 86(8): 878-882.
Ericsson, R.J., C.N. Langevin and M. Nishino. 1973. Isolation of fractions rich in human Y sperm. Nature 246(5433): 421-424.
Garner, D.L., B.L. Gledhill, D. Pinkel, S. Lake, D. Stephenson, M.A. van Dilla and L.A. Johnson. 1983. Quantification of the X- and Y-chromosome-bearing spermatozoa of domestic animals by flow cytometry. Biology of Reproduction 28(2): 312-321.
Goldberg, E.H., E.A. Boyse, D. Bennett, M. Scheid and E.A. Carswell. 1971. Serological demonstration of H-Y (male) antigen on mouse sperm. Nature 232(5311): 478-480.
Gomez, K.A. and A.A. Gomez. 1984. Statistical Procedures for Agricultural Research. 2nd ed. John Wiley and Sons, NewYork. 680 p.
Habermann, F.A., A. Winter, I. Olsaker, P. Reichert and R. Fries. 2005. Validation of sperm sexing in the cattle (Bos taurus) by dual colour fluorescence in situ hybridization. Journal of Animal Breeding and Genetics 122(s1): 22-27.
Husna, A.U., M.A. Awan, A. Mehmood, T. Sultana, Q. Shahzad, M.S. Ansari, B.A. Rakha, S.M. Saqlan Naqvi and S. Akhter. 2017. Sperm sexing in Nili-Ravi buffalo through modified swim up: Validation using SYBR® green real-time PCR. Animal Reproduction Science 182: 69-76.
Iwasaki, S., Y. Shioya, H. Masuda, A. Hanada and T. Nakahara. 1988. Sex ratio of early embryos fertilized in vitro with spermatozoa separated by percoll. Theriogenology 30(6): 1191-1198.
Joerg, H., M. Asai, D. Graphodatskaya, F. Janett and G. Stranzinger. 2004. Validating bovine sexed semen samples using quantitative PCR. Journal of Animal Breeding and Genetics 121(3): 209-215.
Johnson, L.A., J.P. Flook and H.W. Hawk. 1989. Sex preselection in rabbits: Live births from X and Y sperm separated by DNA and cell sorting. Biology of Reproduction 41(2): 199-203.
Khamlor, T., P. Pongpiachan, S. Sangsritavong and N. Chokesajjawatee. 2014. Determination of sperm sex ratio in bovine semen using multiplex real-time polymerase chain reaction. Asian-Australasian Journal of Animal Sciences 27(10): 1411-1416.
Machado, G.M., J.O. Carvalho, E. Siqueira Filho, E.S. Caixeta, M.M. Franco, R. Rumpf and M.A.N. Dode. 2009. Effect of Percoll volume, duration and force of centrifugation, on in vitro production and sex ratio of bovine embryos. Theriogenology 71(8): 1289-1297.
Madrid-Bury, N., R. Fernández, A. Jiménez, S. Pérez-Garnelo, P. Nuno Moreira, B. Pintado, J. de la Fuente and A. Gutiérrez-Adán. 2003. Effect of ejaculate, bull, and a double swim-up sperm processing method on sperm sex ratio. Zygote 11(3): 229-235.
Maleki, A.F., A.H. Moussavi, M.R. Nassiri, M. Tahmoorespur and S.A. Vakili. 2013. Introducing and validation of SYBR green real-time PCR method to determinate sex ratio in bovine semen. Animal Reproduction Science 140(1-2): 1-6.
Maxwell, W.M.C., G. Evans, F.K. Hollinshead, R. Bathgate, S.P. de Graaf, B.M. Eriksson, L. Gillan, K.M. Morton and J.K. O’Brien. 2004. Integration of sperm sexing technology into the ART toolbox. Animal Reproduction Science 82-83: 79-95.
Parati, K., G. Bongioni, R. Aleandri and A. Galli. 2006. Sex ratio determination in bovine semen: A new approach by quantitative real time PCR. Theriogenology 66(9): 2202-2209.
Piumi F., D. Vaiman, E.P. Cribiu, B. Guerin and P. Humblot. 2001. Specific cytogenetic labeling of bovine spermatozoa bearing X or Y chromosomes using fluorescent in situ hybridization (FISH). Genetics Selection Evolution 33(1): 89-98.
Roti Roti, E., N. Cray, M. Wagner and M.R. Botts. 2017. Inventor. Genus PLC (GB), Assignee. Methods and systems for assessing and/or quantifying sperm cell subpopu-lations bearing a specific genetic signature. U.S. Patent No.: US-2019071725-A1. Date of Patent: September 1, 2017.
Svec, D., A. Tichopad, V. Novosadova, M.W. Pfaffl and M. Kubista. 2015. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomolecular Detection and Quantification 3: 9-16.
Welch, G.R., G.C. Waldbieser, R.J. Wall and L.A. Johnson. 1995. Flow cytometric sperm sorting and PCR to confirm separation of X- and Y-chromosome bearing bovine sperm. Animal Biotechnology 6(2): 131-139.
Yan, J., H.L. Feng, Z. Chen, J. Hu, X. Gao and Y. Qin. 2006. Influence of swim-up time on ratio of X- and Y-bearing spermatozoa. European Journal of Obstetrics & Gynecology and Reproductive Biology 129(2): 150-154.