Diversity of <I>BADH2</I> Alleles and Microsatellite Molecules in Highland Fragrant Rice Landraces

Main Article Content

Phukjira Chan-in
Phukjira Chan-in
Narit Yimyam
Tonapha Pusadee

Abstract

Fragrance is one of the most highly valued grain quality traits in rice. The fragrant rice is fetching very high price in the world market and the consumers demand is increasing over the world. Highland rice landraces has unique characteristics, containing high level of genetic diversity and some populations are fragrant rice. Therefore, the purposes of this study were to evaluate the genetic diversity and fragrant allelic variation of highland fragrant rice landraces in northern Thailand. Genetic diversity were assessed by using 12 microsatellite loci. Sensory test for aroma and headspace - gas chromatography (HS-GC) for 2-acetyl-1-pyrroline (2AP) in grain were evaluated. Re-sequencing at exon 7 of BADH2 was performed. The result showed that Buer Ner Moo contained low level of genetic diversity illustrated by heterozygosity (h = 0.012) and average gene diversity (HS=0.015) in spite of high level of genetic differentiation (FST = 0.941). Probably, it is the consequence from farmer’s selection and preferences, as well as the genetic drift from the genetic bottleneck which was the consequence of farmers’ seed conserving for next season and adaptation to the specific local environment. There was BADH2 allelic variation found among the nine Buer Ner Moo populations, while BNM4 had the highest 2AP concentration (2.96 ppm) and illustrated the badh2-E7 deletion on BADH2 gene similar to KDML105 and PTT1, the popular fragrant rice in Thailand. The present results suggested that “Buer Ner Moo” rice landraces could be potentially introduced as genetic resources for fragrant rice breeding program by pure-line selection method or improved variety. The genetic analysis of rice landraces could also be used as a decision-making tool in the selection for conservation strategies.

Article Details

Section
Research Articles

References

งามชื่น คงเสรี. 2547. คุณภาพข้าวและการตรวจสอบข้าวหอมมะลิไทย. เอกสารวิชาการ. กรมวิชาการเกษตร และ สำนักงานเศรษฐกิจอุตสาหกรรม, กรุงเทพฯ. 124 หน้า.

ฉวีวรรณ วุฒิญาโณ. 2543. ข้าวพื้นเมืองไทย. เอกสารวิชาการ. ศูนย์ปฏิบัติการและเก็บเมล็ดเชื้อพันธุ์ข้าวแห่งชาติ สถาบันวิจัยข้าว กรมวิชาการเกษตร, กรุงเทพฯ. 215 หน้า.

รัตนา ม่วงรัตน์ จารุวรรณ จินดากุล และ วรณัฐ อินปัน-บุตร. 2559. การสกัดร่วมกับการกักเก็บสารหอม 2-Acetyl-1-Pyrroline จากใบเตยด้วยแป้งข้าวเจ้าที่ผ่านการเกิดเจลาติไนเซซันภายใต้สภาวะหม้อนึ่งอัดไอเพื่อใช้เคลือบข้าวขาวพิจิตร. วารสารเกษตร 33(2): 299-310

Ahn, S.N., C.N. Bollich and S.D. Tanksley. 1992. RFLP tagging of a gene for aroma in rice. Theoretical and Applied Genetics 84(7-8): 825-828.

Amarawathi, Y., R. Singh, A.K. Singh, V.P. Singh, T. Mohapatra, T.R. Sharma and N.K. Singh. 2008. Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Molecular Breeding: New Strategies in Plant Improvement 21(1): 49-65.

Bandelt, H.J., P. Forster and A. Rohl. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37-48.

Bradbury, L.M.T., R.J. Henry, Q. Jin, R.F. Reinke and D.L.E. Waters. 2005. A perfect marker for fragrance genotyping in rice. Molecular Breeding 16(4): 279-283.

Buttery, R.G., L.C. Ling and B.O. Juliano. 1982. 2-acetyl-1-pyrroline: An important aroma component of cooked rice. Chemistry and Industry 12: 958-959.

Chen, S., Y. Yang, W. Shi, Q. Ji, F. He, Z. Zhan and M. Xu. 2008. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20(7): 1850-1861.

Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Focus 12: 13-15.

Goudet, J. 2001. FSTAT version 2. 9. 3. A program to estimate and test gene diversities and fixation indices. (Online). Available: https://www2.unil.ch/popgen/softwares/fstat.htm (October 11, 2016).

Hufbauer, R.A. and G.K. Roderick. 2005. Microevolution in biological control: mechanisms, patterns, and processes. Biological Control 35(3): 227-239.

Kumar, S., G. Stecher and K. Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870-1874.

Librado, P. and J. Rozas. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452.

Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70: 3321-3323.

Okoshi, M., K. Matsuno, K. Okuno, M. Ogawa, T. Itani and T. Fujimura. 2015. Genetic diversity in Japanese aromatic rice (Oryza sativa L.) as revealed by nuclear and organelle DNA markers. Genetic Resources and Crop Evolution 63(2): 199-208.

Ootsuka, K., I. Takahashi, K. Tanaka, T. Itani, H. Tabuchi, T. Yoshihashi and R. Ishikawa. 2014. Genetic polymorphisms in Japanese fragrant landraces and novel fragrant allele domesticated in northern Japan. Breeding Science 64(2): 115-124.

Peakall, R. and P.E. Smouse. 2006. GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology 6: 288-295.

Pritchard, J.K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.

Pusadee, T., S. Jamjod, Y. C. Chiang, B. Rerkasem and B. A. Schaal. 2009. Genetic structure and isolation by distance in a landrace of Thai rice. Proceedings of the National Academy of Sciences 106(33): 13880-13885.

Sakthivel, K., R.M. Sundaram, N.S. Rani, S.M. Balachandran and C.N. Neeraja. 2009. Genetic and molecular basis of fragrance in rice. Biotechnology Advances 27(4): 468-473.

Shao, G.N., A. Tang, S.Q. Tang, J. Luo, G.A. Jiao, J. L. Wu and P.S. Hu. 2011. A new deletion mutation of fragrant gene and the development of three molecular markers for fragrance in rice. Plant Breeding 130(2): 172-176.

Shi, W., Y. Yang, S. Chen and M. Xu. 2008. Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Molecular Breeding 22(2): 185-192.

Tu, M., B.R. Lu, Y. Zhu and Y. Wang. 2007. Abundant within-varietal genetic diversity in rice germplasm from Yunnan province of China revealed by SSR fingerprints. Biochemical Genetics 45(11-12): 789-801.

Wongpornchai, S., K. Dumri, S. Jongkaewwattana and B. Siri. 2004. Effects of drying methods and storage time on the aroma and milling quality of rice (Oryza sativa L.) cv. Khao Dawk Mali 105. Food Chemistry 87: 407-414.