Effects of fungicides combined with antagonistic fungi and bacteria on the mycelial growth of Fusarium spp., the causal agents of dieback disease in durian

Main Article Content

Juthathip Jitnum
Pattavipha Songkumarn
Supot Kasem
Veeranee Tongsri

Abstract

Dieback disease of durians is caused by Fusarium spp., which causes tree decline, reduced yield, and death in several growing areas of Thailand. Disease control is primarily based on fungicides, which have been continuously used, leading to the development of resistance to these fungicides in the pathogens. The integration of microbial antagonists with fungicides may offer a promising approach to the management of resistant Fusarium isolates and improving disease control efficacy. This research aimed to determine the sensitivity of Fusarium spp. to some fungicides and to assess the antagonistic efficacy of Trichoderma asperellum KU1 and Bacillus amyloliquefaciens KPS46 against Fusarium spp. on culture media, both in the presence and absence of fungicides using the dual culture method. The results revealed that 2 Fusarium isolates exhibited moderate resistance (MR), and 5 isolates showed resistance (R) to chlorothalonil, with EC50 values ranging from 45.42-50.95 and from 146.85 to 661.32ppm, respectively. Six isolates demonstrated moderate resistance (MR) to mancozeb (EC50=12.12-212.85ppm), while 3 isolates exhibited moderate resistance (MR) to difenoconazole (EC50=32.15-35.82ppm). In contrast, no resistance was observed among the isolates to prochloraz (EC50 ranging from <0.1 to 6.68ppm). All 7 Fusarium isolates were subjected to control by antagonistic microorganisms. T. asperellum KU1 demonstrated higher suppression ranging from 51.85-86.11%, compared to B. amyloliquefaciens KPS46, which showed inhibition rates of 2.72-62.50%. However, in the presence of difenoconazole at a concentration of 0.1ppm, the antagonistic bacterium KPS46 exhibited a 1.40-fold increase in its inhibitory efficacy against the fungicide-resistant Fusarium isolate. Therefore, further studies on the combined use of difenoconazole and the antagonistic bacterium KPS46 should be conducted for greenhouse management of durian dieback disease.

Article Details

How to Cite
Jitnum, J., Songkumarn, P., Kasem, S., & Tongsri, V. (2025). Effects of fungicides combined with antagonistic fungi and bacteria on the mycelial growth of Fusarium spp., the causal agents of dieback disease in durian. RMUTSB ACADEMIC JOURNAL, 14(1), 268850. https://doi.org/10.64989/rmutsbj.2026.268850
Section
Research Article

References

Abdo, M. A., Negm, S. E., & Hamada, M. S. (2023). Sensitivity of Fusarium oxysporum isolates collected from strawberry roots to DMI fungicides difenoconazole, tebuconazole and prochloraz. Journal of Plant Protection and Pathology, 14(9), 275-280. https://www.semanticscholar.org/reader/2a1019d98595b3b87e754bd79a6b1485234b9c94

Apithanasakulngeon, P., Suwannarat, S., & Tongsri, V. (2025). Fungicide resistance in Colletotrichum species causing durian anthracnose in eastern Thailand. Agriculture and Natural Resources, 59(1), 1-10. https://li01.tci-thaijo.org/index.php/anres/article/view/266994

Avozani, A., Reis, E. M., & Tonin, R. B. (2014). In vitro sensitivity reduction of Fusarium graminearum to DMI and QoI fungicides. Summa Phytopathologica, 40(4), 358-364. https://doi.org/10.1590/0100-5405/1970

Boonruangrod, P., Pongpisutta, R., & Rattanakreetakul, C. (2021). Physiological factors affecting growth of Fusarium solani causing dieback of durian and fungicide controlling. Khon Kaen Agriculture Journal, 49(6),1375-1387. https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/249549 (in Thai)

Devi, P. A., & Prakasam, V. (2020). Compatibility nature of azoxystrobin 25 SC with Pseudomonas fluorescens and Bacillus subtilis on chilli plants. World Journal of Agricultural Sciences, 1(8), 258264. https://www.internationalscholarsjournals.com/articles/compatibility-nature-of-azoxystrobin-25-sc-with-pseudomonas-fluorescens-and-bacillus-subtilis-on-chilli-plants.pdf

Dewi, F. S., Dewi, R. R., Abadi, A. L., Setiawan, A., Aini, L. Q., & Syibli, M. A. (2025). Biocontrol of Fusarium oxysporum f. sp. cepae on Indonesian local garlic plants (Lumbu Hijau) using a consortium of Bacillus amyloliquefaciens B1 and arbuscular mycorrhizal fungi. Mycobiology, 53(1), 18-26. https://doi.org/10.1080/12298093.2024.2433826

Elshahawy, I. E., & Marrez, D. A. (2024). Antagonistic activity of Trichoderma asperellum against Fusarium species, chemical profile and their efficacy for management of Fusarium‐root rot disease in dry bean. Pest Management Science, 80(3), 1153-1167. https://doi.org/10.1002/ps.7846

EL-Saman, R., Emara, A. R., Selim, N. M., & Ibrahim, H. M. (2023). Study of chemical stability for chlorothalonil and their fungicidal effect against Fusarium solani and Botrytis cinerea. Caspian Journal of Environmental Sciences, 21(1), 35-48. https://cjes.guilan.ac.ir/article_6194.html

FRAC. (2025, August). Fungicide resistance action committee code list©. https://www.frac.info/media/ljsi3qrv/frac-code-list-2025.pdf

Gonzalez, M. F., Magdama, F., Galarza, L., Sosa, D., & Romero, C. (2020). Evaluation of the sensitivity and synergistic effect of Trichoderma reesei and mancozeb to inhibit under in vitro conditions the growth of Fusarium oxysporum. Communicative & Integrative Biology, 13(1), 160-169. https://doi.org/10.1080/19420889.2020.1829267

González-Oviedo, N. A., Iglesias-Andreu, L. G., Flores-de la Rosa, F. R., Rivera-Fernández, A., & Luna-Rodríguez, M. (2022). Genetic analysis of the fungicide resistance in Fusarium oxysporum associated to Vanilla planifolia. Revista Mexicana De Fitopatología, 40(3), 330-348. https://doi.org/10.18781/r.mex.fit.2203-3

Khedher, S. B., Mejdoub-Trabelsi, B., & Tounsi, S. (2021). Biological potential of Bacillus subtilis V26 for the control of Fusarium wilt and tuber dry rot on potato caused by Fusarium species and the promotion of plant growth. Biological Control, 152, 104444. https://doi.org/10.1016/j.biocontrol.2020.104444

Kongtragoul, P., Somnuek, S., Udompongsuk, M., Prasom, P., & Jaenaksorn, T. (2022). Cross-resistance to benzimidazole group and mancozeb fungicides in Colletotrichum spp. causing anthracnose disease. Science & Technology Asia, 27(4), 400-408. https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/247940

Li, M., Chen, L., Wang, Q., He, L., Duan, Y., Mao, X., & Zhou, L. (2025). Species Identification and fungicide sensitivity of Fusarium spp. causing peanut root rot in Henan, China. Journal of Fungi, 11(6), 433. https://doi.org/10.3390/jof11060433

Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Belabess, Z., & Barka, E. A. (2022). Biological control of plant pathogens: A global perspective. Microorganisms, 10(3), 596. https://doi.org/10.3390/microorganisms10030596

Mao, X., Cao, T., Chen, L., Li, M., Zhao, X., Liu, H., Duan, Y., Wang, L., & Zhou, L. (2025). Resistance risk and mechanism of prochloraz in Fusarium solani. Pesticide Biochemistry and Physiology, 213, 106548. https://doi.org/10.1016/j.pestbp.2025.106548

Miljakovic, D., Marinkovic, J., & Baleševic-Tubic, S. (2020). The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(7), 1037. https://doi.org/10.3390/microorganisms8071037

Ministry of Commerce. (2024, June 28). Durian: Weekly Report (Week 4, June 24-28, 2024) https://regional.moc.go.th/th/file/get/file/202407013a6133c1bd218dfc40828623c88c6fea161400.pdf (in Thai)

Naqvi, S. A. H., Farhan, M., Ahmad, M., Kiran, R., Shahbaz, M., Abbas, A., & Sathiya Seelan, J. S. (2025). Fungicide resistance in Fusarium species: Exploring environmental impacts and sustainable management strategies. Archives of Microbiolog, 207(2), 31. https://doi.org/10.1007/s00203-024-04219-6

Naziya, B., & Sharada, M. S. (2018). Inhibitory effects of mancozeb on growth and stimulation of resistance against Fusarium wilt of brinjal. The Bioscan, 13(S1), 285-290. https://thebioscan.com/index.php/pub/article/view/1582

Nianwichai, P., Tongsri, V., Taraput, N., Srisopha, W., Sichai, K., Bussabong, N., Songkumarn, P., & Koohapitagtam, M. (2022). Mancozeb resistance of Phytophthora palmivora, a causal agent of stem rot and leaf blight of durian in eastern Thailand. King Mongkut’s Agricultural Journal, 40(3), 225-235. https://li01.tci-thaijo.org/index.php/agritechjournal/article/view/254891 (in Thai)

Panda, A. G., Boblina, B., Mishra, M. K., Senapati, A. K., Datta, D., & Jena, B. (2023). Evaluation of fungicide compatibility with a co-culture of Trichoderma spp. under in vitro conditions. Biological Forum – An International Journal, 15(1), 685-688. https://www.researchtrend.net/bfij/pdf/110%20Evaluation-of-Fungicide-compatibility-with-a-Co-culture-of-Trichoderma-spp.-under-in-vitro-Conditions-110.pdf

Petkar, A., Langston, D. B., Buck, J. W., Stevenson, K. L., & Ji, P. (2017). Sensitivity of Fusarium oxysporum f. sp. niveum to prothioconazole and thiophanate-methyl and gene mutation conferring resistance to thiophanate-methyl. Plant Disease, 101(2), 366-371. https://doi.org/10.1094/PDIS-09-16-1236-RE

Podbielska, M., Kus-Liskiewicz, M., Jagusztyn, B., Piechowicz, B., Sadto, S., Stowik-Borowiec, M., Twaruzek, M., & Szpyrka, E. (2020). Influence of Bacillus subtilis and Trichoderma harzianum on penthiopyrad degradation under laboratory and field studies. Molecules, 25(6), 1421. https://doi.org/10.3390/molecules25061421

Poromarto, S. H., & Permatasari, F. I. (2023). Fungicide resistance of Fusarium oxysporum f. sp. Cepae isolated from shallot in Brebes. IOP Conference Series: Earth and Environmental Science, 1180, 012033. https://doi.org/10.1088/1755-1315/1180/1/012033

Pongpisutta, R., Rattanakreetakul, C., Bincader, S., Chatchaisiri, K., & Boonruangrod, P. (2020). Detection of fungal pathogen causing durian dieback disease. Khon Kaen Agriculture Journal, 48(4), 703-714. https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/251279 (in Thai)

Pongpisutta, R., Keawmanee, P., Sanguansub, S., Dokchan, P., Bincader, S., Phuntumart, V., & Rattanakreetakul, C. (2023). Comprehensive investigation of die-back disease caused by Fusarium in durian. Plants, 12(17), 3045. https://doi.org/10.3390/plants12173045

Ruocco, M., Lanzuise, S., Vinale, F., Marra, R., Turrà, D., Woo, S. L., & Lorito, M. (2009). Identification of a new biocontrol gene in Trichoderma atroviride: The role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Molecular Plant-Microbe Interactions, 22(3), 291-301. https://doi.org/10.1094/MPMI-22-3-0291

Tongsri, V., Nianwichai, P., Sichai, K., Songkumarn, P., Suttiviriya, P., & Kongtragoul, P. (2023). Sensitivity tests of dimethomorph, ethaboxam and etridiazole on Phytophthora palmivora causing stem rot and leaf blight of durian in eastern Thailand. Agriculture and Natural Resources, 57(4), 559-568. https://li01.tci-thaijo.org/index.php/anres/article/view/260445/177952

Tyskiewicz, R., Nowak, A., Ozimek, E., & Jaroszuk-Sciset, J. (2022). Trichoderma: The current status of Its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences, 23(4), 2329. https://doi.org/10.3390/ijms23042329

Verma, P., Chaudhary, S., Sagar, S., Singh, A., Singh, M., & Tomar, A. (2025). Morpho-molecular characterization of native Trichoderma spp. isolates and their biocontrol efficacy against Fusarium oxysporum. Vegetos, 2025, 1-11. https://doi.org/10.1007/s42535-025-01168-3

Wang, W., Peng, G., Sun, Y., & Chen, X. (2024). Increasing the tolerance of Trichoderma harzianum T-22 to DMI fungicides enables the combined utilization of biological and chemical control strategies against plant diseases. Biological Control, 192, 105479. https://doi.org/10.1016/j.biocontrol.2024.105479

Wesche, J., & Schnabel, G. (2025). Impact of DMI fungicides on Bacillus subtilis cell growth and consequences for disease control. Plant Disease, 109(8), 1668-1674. https://doi.org/10.1094/PDIS-11-24-2367-RE

Win, T. T., Bo, B., Malec, P., Khan, S., & Fu, P. (2021). Newly isolated strain of Trichoderma asperellum from disease suppressive soil is a potential bio-control agent to suppress Fusarium soil borne fungal phytopathogens. Journal of Plant Pathology, 103(2), 549-561. https://doi.org/10.1007/s42161-021-00780-x

Xu, C., Guo, M., Han, X., Ren, C., Liu, C., Fu, W., & Chen, Y. (2025). Fungal pathogen diversity and fungicide resistance assessment in Fusarium crown rot of wheat in the Huanghuai region of China. Journal of Agricultural and Food Chemistry, 73(4), 2299-2311. https://doi.org/10.1021/acs.jafc.4c09274

Xu, W., Zhang, L., Goodwin, P. H., Xia, M., Zhang, J., Wang, Q., Liang, j., Sun, R., Wu, C., & Yang, L. (2020). Isolation, identification, and complete genome assembly of an endophytic Bacillus velezensis YB-130, potential biocontrol agent against Fusarium graminearum. Frontiers in Microbiology, 11, 598285. https://doi.org/10.3389/fmicb.2020.598285

Xu, X., Wang, Y., Lei, T., Sohail, M. A., Wang, J., & Wang, H. (2022). Synergistic effects of Bacillus amyloliquefaciens SDTB009 and difenoconazole on Fusarium wilt of tomato. Plant Disease, 106(8), 2165-2171. https://doi.org/10.1094/PDIS-12-21-2650-RE

Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J., & Chen, J. (2023). Trichoderma and its role in biological control of plant fungal and nematode disease. Frontiers in Microbiology, 14, 1160551. https://doi.org/10.3389/fmicb.2023.1160551

Zhang, C., Wang, W., Xue, M., Liu, Z., Zhang, Q., Hou, J., Xing, M., Wang, R., & Liu, T. (2021). The combination of a biocontrol agent Trichoderma asperellum SC012 and hymexazol reduces the effective fungicide dose to control Fusarium wilt in cowpea. Journal of Fungi, 7(9), 685. https://doi.org/10.3390/jof7090685