Microalgal Diversity in Oil Palm Industrial Wastewater Collected from Trang and Krabi Province
Main Article Content
Abstract
The objectives of this research was to study the species and diversity of the microalgae from the final wastewater treatment pond of the palm oil factories. The wastewater samples were collected from Trang 1 and Trang 2; in Trang province and Khabi 1; in Khabi province, respectively. A total of 5 divisions, including 6 orders, 9 genera and 10 species was identified Phormidium sp. and Euglena sp.1 were dominant species presented in all three oil palm industrial wastewater. The Shannon-Wiener’s index of microalgal diversity in the three oil palm industrial wastewater pond was ranging from 0.8806 to 1.3091. The cluster analysis showed low similarity among microalgal species, whereas the water qualities were similar among the three areas. Canonical correspondences analysis revealed that there was an obvious relationship of microalgal species and water transparency. Oscillatoria sp., Cryptomonas sp., Pleurosigma sp. and Microcystis sp. were commonly founded in water with high transparency and low BOD.
Article Details
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรง ซึ่งกองบรรณาธิการวารสารไม่จำเป็นต้องเห็นด้วยหรือร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช ถือเป็นลิขสิทธ์ของวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช หากบุคคลหรือหน่วยงานใดต้องการนำข้อมูลทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อการกระทำการใด ๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราชก่อนเท่านั้น
The content and information in the article published in Wichcha journal Nakhon Si Thammarat Rajabhat University, It is the opinion and responsibility of the author of the article. The editorial journals do not need to agree. Or share any responsibility.
References
เบ็ญจมาศ จันทะภา ไพบูลย์กิจกุล ลภัสลดา ไกรสินธุ์ ศศิฬา ฉิมพลี และชลี ไพบูลย์กิจกุล. (2558). ความหลากหลายของแพลงก์ตอนพืชบริเวณบ้านบางสระเก้า อ.แหลมสิงห์
จ.จันทบุรี. แก่นเกษตร, 43(ฉบับพิเศษ 1), 568-573.
ยุวดี พีรพรพิศาล. (2549). สาหร่ายวิทยา. เชียงใหม่: ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่.
ลัดดา/วงศ์รัต./(2544)./แพลงก์ตอนพืช./กรุงเทพฯ: ภาควิชาชีววิทยา. คณะประมง/มหาวิทยาลัยเกษตรศาสตร์.
เสถียรพงษ์ ขาวหิต เกษม จันทร์แก้ว วศิน อิงคพัฒนากุล อรอนงค์ ผิวนิล อนุกรณ์ บุตรสันติ์ และเอกชัย บุดดา. (2558). ความหลากหลายชนิดของแพลงก์ตอนพืชและความสัมพันธ์กับคุณภาพน้ำบริเวณพื้นที่ชายฝั่งทะเลแหลมผักเบี้ย: โครงการศึกษาวิจัยและพัฒนาสิ่งแวดล้อมแหลมผักเบี้ยอันเนื่องมาจากพระราชดำริ จังหวัดเพชรบุรี. วารสารวิจัยและพัฒนา มจธ., 38(2), 167-179.
APHA. (2005). Standard Methods for the Examination of Water and Wastewater. Washington DC: Port City Press.
Aziz, M.A. and Ng, W.J. (1992). Feasibility of wastewater treatment using the activated-algae process. Bioresource Technology, 40(3), 205-208.
Bender, J., Gould, J.P., Vatcharapijarn, Y., Young, J.S. and Phillips, P. (1994). Removal of zinc and manganese from contaminated water with cyanobacteria mats. Water Environment Research, 66(5), 679-683.
Bendschneider, K. and Robinson, J.R. (1952). A new spectrophotometric method for the determination of nitrite in seawater. Journal of Marine Research, 11, 87-96.
Bernal, C.B., Vazquez, G., Quintal, I.B. and Bussy, A.N. (2008). Microalgal dynamics in batch reactors for municipal wastewater treatment containing dairy sewage water. Water Air and Soil Pollution, 190(1), 259-270.
Bhatnagar, A., Bhatnagar, M., Chinnasamy, S. and Das, K.C. (2010). Chlorella minutissima-A promising fuel alga for cultivation in municipal wastewaters. Applied Biochemistry and Biotechnology, 161(1-8), 523-536.
Cañizares-Villanueva, R.O., Ramos, A., Corona, A.I., Monroy, O., de la Torre, M., Gomez-Lojero, C. and Travieso, L. (1994). Phormidium treatment of anaerobically treated swine wastewater. Water Research, 28(9), 1891-1895.
Chinnasamy, S., Bhatnagar, A., Hunt, R.W. and Das, K.C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101(9), 3097-3105.
de-Bashan, L.E., Trejo, A., Huss, V.A.R., Hernandez, J.P. and Bashan, Y. (2008). Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresource Technology, 99(11), 4980-4989.
Desikachary, T.V. (1959). Cyanophyta. New Delhi: Botany Department, University of Madras., Published. Indian Council of Agricultural.
El-Sheekh, M.M., El-Shouny, W.A., Osman, M.E.H. and El-Gammal, E.W.E. (2005). Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents. Environmental Toxicology and Pharmacology, 19(2), 357-365.
Fallowfield, H.D. and Barret, M.K. (1985). The photosynthetic treatment of pig slurry in temperate climatic conditions: A pilot plant study. Agricultural Wastes, 12(2), 111-136.
Gantar, M., Obreht, Z. and Dalmacija, B. (1991). Nutrient removal and algal succession during the growth of Spirulina platensis and Scenedesmus quadricauda on swine wastewater. Bioresource Technology, 36(2), 167-171.
Hodaifa, G., Martínez, M.E. and Sánchez, S. (2009). Influence of pH on the culture of Scenedesmus obliquus in olive-mill wastewater. Biotechnology and Bioprocess Engineering, 14(6), 854-860.
Kim, J., Lingaraju, B.P., Rheaume, R., Lee, J.Y. and Siddiqui, K.F. (2010). Removal of ammonia from wastewater effluent by Chlorella Vulgaris. Tsinghua Science Technology, 15(4), 391-396.
Martinez, M.E., Sanchez, S., Jimenez, J.M., Yousfi, F.E. and Munoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology, 73(3), 263-272.
Olguín, E.J., Galicia, S., Mercado, G. and Pérez, T. (2003). Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied Phycology, 15(2-3), 249-257.
Oliveira, A.S., Bocio, A., Trevilato, T.M., Takayanagui, A.M., Domingo, J.L. and Segura-Munoz, S.I. (2007). Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant. Environmental Science and Pollution Research International, 14(7), 483-489.
Prescott, G.W. (1962). Algae of the Western Great Lakes Area: With an illustrated key to the genera of desmids and freshwater diatoms. Iowa: Wm. C. Brown Co. Inc.
Pizarro, C., Kebede-Westhead, E. and Mulbry, W. (2002). Nitrogen and phosphorus removal rates using small algal turfs grown with dairy manure. Journal Applied Phycology, 14(6), 469-473.
Renuka, N., Sood, A., Ratha, S.K., Prasanna, R. and Ahluwalia, A.S. (2013). Nutrient sequestration, biomass production by microalgae and phytoremediation of sewage water. International Journal of Phytoremediation, 15(8), 789-800.
Renuka, N., Sood, A., Prasanna, R. and Ahluwalia, A.S. (2014). Influence of seasonal variation in water quality on the microalgal diversity of sewage wastewater. South African Journal of Botany, 90, 137-145.
Sasaki, K. and Sawada, Y. (1980). Determination of ammonia in estuary.
Bulletin of the Japanese Society of Scientific Fisheries, 46(3), 319-321.
Senthil, P., Jeyachandran, S., Manoharan, C. and Vijayakumar, S. (2012). Microbial diversity in rubber industry effluent. International Journal of Pharmacy and Biological Sciences, 2(1), 123-131.
Shanthala, M., Hosmani, S.P. and Hosetti, B.B. (2009). Diversity of phytoplankton in a waste stabilization pond at Shimoga town, Karnataka State, India. Environmental Monitoring and Assessment, 151(1-4), 437-443.
Shirai, F., Kunii, K., Sato, C., Teramoto, Y., Mizuki, E., Murao, S. and Nakayama, S. (1998). Cultivation of microalgae in the solution from the desaltion process of soy sauce waste treatment and utilization of the algal biomass for ethanol fermentation. World Journal of Microbiology and Biotechnology, 14(6), 839-842.
Strickland, J.D.H. and Parsons, T.R. (1972). A Practical Handbook of Seawater Analysis. Ottawa: Fisheries Research Board of Canada Bulletin.
Tam, N.F.Y. and Wong, Y.S. (1989). Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environmental Pollution, 58(1), 19-34.
Tarlan, E., Dilek, F.B. and Yetis, U. (2002). Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresource Technology, 84(1), 1-5.
Torres, M.A., Borros, M.P., Campos, S.C.G., Pinto, E., Rajamani, S., Sayre, R.T. and Colepicolo, P. (2008). Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicology and Environmental Safety, 71(1), 1-15.
Voltolina, D., Cordero, B., Nieves, M. and Soto, L.P. (1999). Growth of Scenedesmus sp. in artificial wastewater. Bioresource Technology, 68(3), 265-268.
Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y. and Ruan, R. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology, 162(4), 1174-1186.
Yang, X., Wu, X., Hao, H. and He, Z. (2008). Mechanisms and assessment of water eutrophication. Journal of Zhejiang University Science, 9(3), 197-209.