The Cultivation of a Blue Thai Marine Sponge, Xestospongia sp., under Natural Conditions to Produce Anticancer Compound, Renieramycin M การเลี้ยงฟองน้ำทะเลสีน้ำเงิน Xestospongia sp. ของไทยในสภาวะธรรมชาติเพื่อผลิตสารต้านมะเร็ง Renieramycin M
Main Article Content
Abstract
A Thai blue marine sponge, Xestospongia sp. (c.f. Neopetrosia sp.), can produce highly effective anticancer compounds; namely, Renieramycin M (RM). Currently, this compound is in clinical trials processes before developing it as a new anticancer agent. To provide sufficient RM for clinical trials and a prospective pharmaceutical market, a blue Xestospongia sponge was cultured under natural conditions to assess the RM production and record the growth. The sponge was cultured near the coastline of the Trang Province Sea area by the long line method for 10 months. Three substrates, i.e., a plastic rope, cement pieces, and a polyvinylchloride (PVC) pipe, respectively, were used. Results revealed that the sponge produced maximum and accumulated RM in September (0.42 µg/mg tissue), but it was not observed during summer (February-April) and the early monsoon season (May-July). The growth of a blue sponge did not exhibit any statistical difference at the 95% confidence interval. The maximum growth was observed in June. Based on the result, it can be concluded that changes in the temperature and salinity in the monsoon season cause the sponges to utilize its energy for synthesizing and accumulating RM in their tissues rather than utilizing for its growth.
Article Details
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรง ซึ่งกองบรรณาธิการวารสารไม่จำเป็นต้องเห็นด้วยหรือร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช ถือเป็นลิขสิทธ์ของวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช หากบุคคลหรือหน่วยงานใดต้องการนำข้อมูลทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อการกระทำการใด ๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราชก่อนเท่านั้น
The content and information in the article published in Wichcha journal Nakhon Si Thammarat Rajabhat University, It is the opinion and responsibility of the author of the article. The editorial journals do not need to agree. Or share any responsibility.
References
Belarbi, E.H., Dominguez, M.R., Garcia, M.C.C., Gomez, A.C., Camacho, F.G. and Grima, E.M. (2003). Cultivation of explants of the marine sponge Crambe crambe in closed systems. Biomolecular Engineering, 20(4-6), 333-337.
Carballo, J.L., Yanez, B., Zubia, E., Ortega, M.J. and Vega, C. (2010). Culture of explants from the sponge Mycale cecilia to obtain bioactive mycalazal-type metabolites. Marine Biotechnology, 12(5), 516-525.
Daikuhara, N., Tada, Y., Yamaki, S., Charupant, K., Amnuoypol, S., Suwanborirux, K. and Saito, N. (2009). Chemistry of renieramycins. Part 7: Renieramycins T and U, novel renieramycin-ecteinascidin hybrid marine natural products from Thai sponge Xestospongia sp. Tetrahedron Letters, 50(29), 4276-4278.
Desqueyroux-Faúndez, R. and Valentine, C. (2002). Family Niphatidae Van Soest, 1980. In Hooper, J.N.A. and Van Soest, R.W.M. (Eds.). Systema Porifera: A guide to the classification of sponges, pp. 874-890. New York: Boston.
Duckworth, A.R. and Peterson, B.J. (2013). Effects of seawater temperature and pH on the boring rates of the sponge Cliona celata in scallop shells. Marine Biology, 160, 27-35.
Epstein, J.N., Casey, B.J., Tonev, S.T., Davidson, M.C., Reiss, A.L., Garrett, A., Hinshaw, S.P., Greenhill, L. L., Glover, G., Shafritz, K.M., Vitolo, A., Kotler, L.A., Jarrett, M.A. and Spicer, J. (2007). ADHD- and medication-related brain activation effects in concordantly affected parent-child dyads with ADHD. Journal of Child Psychology and Psychiatry, 48(9), 889-913.
Frøhlich, H. and Barthel, D. (1997). Silica uptake of the marine sponge Halichondria panicea in Kiel Bight. Marine Biology, 128, 115-125.
Fromont, J. (1991). Descriptions of species of the Petrosida (Porifera: Demospongiae) in the tropical waters of the Great Barrier Reef. Beagle records north. The Beagle Records of the Northern in Territory Museum of Arts and Science, 8, 73-96.
Halim, R., Gladman, B., Danquah, M.K. and Webley, P.A. (2011). Oil extraction from microalgae for biodiesel production. Bioresource Technology, 102(1), 178-185.
Hooper, J.N.A. and Van Soest, R.W.M. (2002). Systema Porifera: a guide to the classification of sponges. New York: Kluwer Academic/Plenum Publishers.
Kieattisak, Y., Udomsak, D., Wattana, W. and Patchara, P. (2017). Cultivation of a blue marine sponge, Xestospongia sp. (c.f. Neopretrosia sp.) in hatchery as an ornamental species. Agricultural Research & Technology Open Access Journal, 12(2), 001-004.
Osinga, R., Sidri, M., Cerig, E., Gokalp, S.Z. and Gokalp, M. (2010). Sponge aquaculturetrials in the east-mediterranean sea: new approaches to earlier ideas. The Open Marine Biology Journal, 4, 74-81.
Osinga, R., Tramper, J. and Wijffels, R.H. (1999). Cultivation of Marine Sponges. Marine Biotechnology, 1(6), 509-532.
Pinkhien, T., Maiuthed, A., Chamni, S., Suwanborirux, K., Saito, N., and Chanvorachote, P. (2016). Bishydroquinone Renieramycin M induces apoptosis of human lung cancer cells through a mitochondria-dependent pathway. Anticancer Research, 36(12), 6327-6333.
Ruiz, M.F., Sarno, F., Zorrilla, S., Rivas, G. and Sánchez, L. (2013). Biochemical and functional analysis of Drosophila-sciara chimeric sex-lethal proteins. Plos One, 8(6), 1-13.
Sankar, R.K, Chadha, N.K., Damroy, S., Banerjee, P., Saharan, N. and Krishnan, P. (2016). Growth and survival of marine sponges, Stylissa massa (Carter, 1887) and Liosina paradoxa (Thiele, 1889) in sea and land based culture systems. Indian Journal of Fisheries, 63(4), 55-60.
Schiefenhovel, K. and Kunzmann, A. (2012). Sponge farming trials: Survival, attachment, and growth of two Indo-Pacific sponges, Xestospongia sp. and Stylissa massa. Journal of Marine Biology, 11(1), 1-11.
Singh, A. and Thakur, N.L. (2016). Influence of spatial competitor on the growth and regeneration of the marine sponge Cinachyrella cf. cavernosa (Porifera, Demospongiae). Hydrobiologia, 768, 111-123.
Sipkema, D., Franssen, M.C.R., Osinga, R., Tramper, J. and Wijffels, R.H. (2005). Marine Sponges as Pharmacy. Marine Biotechnology, 7(3), 142-162.
Sirimangkalakitti, N., Chamni, S., Suwanborirux, K. and Chanvorachote, P. (2017). Renieramycin M attenuates cancer stem cell-like phenotypes in H460 lung cancer cells. Anticancer Research, 37(2), 615-621.
Suwanborirux, K., Amnuoypol, S., Plubrukarn, A., Pummangura, S., Kubo, A., Tanaka, C. and Saito, A. (2003). Chemistry of renieramycins part 3, isolation and structure of stabilized renieramycins type derivative possessing antitumor activity from Thai sponge Xestospongia species pretreat with potassium cyanide. Journal of Natural Products, 66(11), 1441-1446.
Tomassen, H. and Riisgard, H.U. (1995). Growth and energetics of the sponge Halichondria panacea. Marine Ecology Progress Series, 128(1-3), 239-246.
Tun, W.M., Yap, C.H., Saw, S.N., James, J.L. and Clark, A.R. (2019). Differences in placental capillary shear stress in fetal growth restriction may affect endothelial cell function and vascular network formation. Scientific Reports, doi: https://doi.org/10.1038/s41598-019-46151-6.
Van Soest, R.W.M., Boury-Esnault, N., Janussen, D. and Hooper, J. (2005). World Porifera Database. Retrieved 25 June 2020, from: http://www.vliz.be/vmdcdata/porifera.