Genetic Diversity of the Parah Tree (Elateriospermum tapos) in Primitive Forests and Planted Forests in Khao Nan National Park, Nakhon Si Thammarat Province, Analyzed from Nucleotide Sequences from the MaturaseK Gene in Chloroplast DNA
Main Article Content
Abstract
The parah tree (Elateriospermum tapos) is a species of wild and local economic plant that spreads in the south of Thailand. Khao Nan National Park has a large parah forest area where parah seeds from the primitive forest are now being used for planting. Therefore, genetic traits should be examined as for the information in the management of planting forests. This study aimed to analyze the genetic diversity of parah trees in primitive forests and forests planted in Khao Nan National Park. It was analyzed from nucleotide sequences from the maturaseK gene in a 772 based pairs of DNA chloroplasts. The findings indicated that parah trees in primitive forests have a higher genetic diversity than parahs in planted forests. We found a separation of two population groups: parah trees from primitive forests and parah trees from planted forests. We also found a tendency to separate the evolutionary line of parah trees in planted forests from parah trees in primitive forests. Based on the results of this study, we suggest that genetic management should be managed separately between parah trees from primitive forests and parah trees from planted forests to avoid genetic contamination.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรง ซึ่งกองบรรณาธิการวารสารไม่จำเป็นต้องเห็นด้วยหรือร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช ถือเป็นลิขสิทธ์ของวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช หากบุคคลหรือหน่วยงานใดต้องการนำข้อมูลทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อการกระทำการใด ๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราชก่อนเท่านั้น
The content and information in the article published in Wichcha journal Nakhon Si Thammarat Rajabhat University, It is the opinion and responsibility of the author of the article. The editorial journals do not need to agree. Or share any responsibility.
References
จุฑามาศ ศุภพันธ์ วีระเกียรติ ทรัพย์มี และพัฒนพร รินทจักร. (2563). ความหลากหลายทางพันธุกรรมของต้นประ (Elateriospermum tapos) ในอำเภอนบพิตำ จังหวัดนครศรีธรรมราช. วารสารวิจัยราชภัฏพระนคร สาขาวิทยาศาสตร์และเทคโนโลยี, 16(1), 115-126.
จุฑามาศ ศุภพันธ์ วรางคณา ทรัพย์สิน นันทพร ขันทพร วีระเกียรติ ทรัพย์มี วรวิทู มีสุข และสุพัตร ฤทธิรัตน์. (2562). ความหลากหลายทางพันธุกรรมของต้นนาคบุตร (Mesua ferrea L.) ในจังหวัดนครศรีธรรมราช. การประชุมวิชาการชมรมคณะปฏิบัติงานวิทยาการ อพ.สธ. ครั้งที่ 9 ทรัพยากรไทย : ชาวบ้านไทยได้ประโยชน์. นครราชสีมา.
ปริญญา หม่อมพิบูลย์ วันดี แก้วสุวรรณ อนุรักษ์ ตรีเพ็ชร และธราดล วัฒนนาวิน. (2561). แนวทางการพัฒนาเทคโนโลยีการแปรรูปผลิตภัณฑ์จากเมล็ดประในเชิงพาณิชย์. วารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช, 37(พิเศษ), 114-128.
วิสุทธิ์ ใบไม้ และรังสิมา ตัณฑเลขา. (2550). เขานัน-ป่าเมฆธรรมชาติกับภาวะโลกร้อน. กรุงเทพฯ: กรุงเทพฯ จำกัด.
Bennici, S., Guardo, M., Distefano, G., Casas, G.L., Ferlito, F., Franceschi, P.D., Dondini, L., Gentile, A. and Malfa, S.L. (2020). Deciphering S-RNase allele patterns in cultivated and wild accessions of Italian Pear Germplasm. Forest, 11(11), doi: https://doi.org/10.3390/f11111228.
Choonhahirun, A. (2010). Proximate composition and functional properties of Pra (Elateriospermum tapos Blume) seed flour. African Journal of Biotechnology, 9(36), 5946-5949.
Excoffier, L. and Lischer, H.E.L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564-567, doi: https://doi.org/10.1111/j.1755-0998.2010.02847.x.
Fu, F.X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147(2), 915-925, doi: https://doi.org/10.1093/genetics/147.2.915.
Gao, Y., Yin, S., Wu, L., Dai, D., Wang, H., Liu, C. and Tang, L. (2017). Genetic diversity and structure of wild and cultivated Amorphophallus paeoniifolius populations in southwestern China as revealed by RAD-seq. Scientific Reports, 7(1), doi: https://doi.org/10.1038/s41598-017-14738-6.
Hernández-Verdugo, S., Luna-Reyes, R. and Oyama, K. (2001). Genetic structure and differentiation of wild and domesticated populations of Capsicum annuum (Solanaceae) from Mexico. Plant Systematics and Evolution, 226(3), 129-142, doi: https://doi.org/10.1007/s006060170061.
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. and Higgins, D.G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948, doi: https://doi.org/10.1093/bioinformatics/btm404.
Librado, P. and Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452, doi: https://doi.org/10.1093/bioinformatics/btp187.
Ma, C., Cheng, Q., Zhang, Q., Zhuang, P. and Zhao, Y. (2010). Genetic variation of Coilia ectenes (Clupeiformes: Engraulidae) revealed by the complete cytochrome b sequences of mitochondrial DNA. Journal of Experimental Marine Biology and Ecology, 385(1-2), 14-19, doi: https://doi.org/10.1016/j.jembe.2010.01.015.
Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University press.
Nei, M. and Li, W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76(10), 5269-5273, doi: https://doi.org/10.1073/pnas.76.10.5269.
Ramirez-Soriano, A., Ramos-Onsins, S.E., Rozas, J., Calafell, F. and Navarro, A. (2008). Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination. Genetics, 179(1), 555-567, doi: https://doi.org/10.1534/genetics.107.083006.
Rollo, A., Ribeiro, M.M., Costa, R.L., Santos, C., Clavo, Z.M., Mandak, B., Kalousova, M., Vebrova, H., Chuqulin, E., Torres, S.G., Aguilar, R.M.V., Hlavsa, T. and Lojka, B. (2020). Genetic structure and pod morphology of Inga edulis cultivated vs. wild populations from the Peruvian Amazon. Forests, 11(6), doi: https://doi.org/10.3390/f11060655.
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595, doi: https://doi.org/10.1093/genetics/123.3.585.
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729, doi: https://doi.org/10.1093/molbev/mst197.
Watterson, G.A. (1984). Allele frequencies after a bottleneck. Theoretical Population Biology, 26(3), 387-407, doi: https://doi.org/10.1016/0040-5809(84)90042-X.
Yang, Z. (2006). Computational molecular evolution. New York: Oxford University press.