Study of Probiotic Properties and Functional Activities of Yeasts Isolated for Feed Supplement
Main Article Content
Abstract
Eighteen isolated yeasts from rice and natural sources are characterized as probiotics. All strains, at 37°C, lack hemolysis and withstand simulated gastrointestinal conditions and bile salts. Strains were identified as Meyerozyma caribbica, Saccharomyces cerevisiae, Pichia kudriavzevii, Starmerella sorbosivorans, Kodamaea ohmeri, Ambrosiozyma kamigamensis, and Metschnikowia koreensis. Strong adherence to intestinal cells was noted, plus sensitivity to certain antifungals, confirming safety. Notably, M. caribbica TISTR 6026 and M. koreensis TISTR 6044 demonstrated xylanase activity. Also, M. caribbica TISTR 6017, S. cerevisiae TISTR 5104, TISTR 5328, and P. kudriavzevii TISTR 6028 exhibited antimicrobial action against pathogens. These four strains showed immunomodulatory potential, impacting phagocytosis, nitric oxide, TNF-α, and IL-6. These findings underscore their promise as versatile probiotics for immunomodulation and addressing pathogens, showcasing their broad potential.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
เนื้อหาและข้อมูลในบทความที่ลงตีพิมพ์ในวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช ถือเป็นข้อคิดเห็นและความรับผิดชอบของผู้เขียนบทความโดยตรง ซึ่งกองบรรณาธิการวารสารไม่จำเป็นต้องเห็นด้วยหรือร่วมรับผิดชอบใด ๆ
บทความ ข้อมูล เนื้อหา รูปภาพ ฯลฯ ที่ได้รับการตีพิมพ์ในวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช ถือเป็นลิขสิทธ์ของวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราช หากบุคคลหรือหน่วยงานใดต้องการนำข้อมูลทั้งหมดหรือส่วนหนึ่งส่วนใดไปเผยแพร่ต่อหรือเพื่อการกระทำการใด ๆ จะต้องได้รับอนุญาตเป็นลายลักษณ์อักษรจากวารสารวิชชา มหาวิทยาลัยราชภัฏนครศรีธรรมราชก่อนเท่านั้น
The content and information in the article published in Wichcha journal Nakhon Si Thammarat Rajabhat University, It is the opinion and responsibility of the author of the article. The editorial journals do not need to agree. Or share any responsibility.
References
Abulreesh, H.H., Organji, S.R., Elbanna, K., Osman, G.E.H., Almalki, M.H.K., Abdel-Malek, A.Y., Ghyathuddin, A.A.K. and Ahmad, I. (2019). Diversity, virulence factors, and antifungal susceptibility patterns of pathogenic and opportunistic yeast species in rock pigeon (Columba livia) fecal droppings in Western Saudi Arabia. Polish Journal of Microbiology, 68(4), 493-504, doi: https://doi.org/10.33073/pjm-2019-049.
Choińska, R., Piasecka-Jóźwiak, K., Chabłowska, B., Dumka, J. and Łukaszewicz, A. (2020). Biocontrol ability and volatile organic compounds production as a putative mode of action of yeast strains isolated from organic grapes and rye grains. Antonie van Leeuwenhoek, 113, 1135-1146, doi: https://doi.org/10.1007/s10482-020-01420-7.
Espinel-Ingroff, A. (2022). Commercial methods for antifungal susceptibility testing of yeasts: Strengths and limitations as predictors of resistance. Journal of Fungi, 8(3), doi: https://doi.org/10.3390/jof8030309.
Fakruddin, M., Hossain, M.N. and Ahmed, M.M. (2017). Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complementary and Alternative Medicine, 17(64), doi: https://doi.org/10.1186/s12906-017-1591-9.
Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39(4), 783-791, doi: https://doi.org/10.1111/j.1558-5646.1985.tb00420.x.
Fidan, I., Kalkanci, A., Yesilyurt, E., Yalcin, B., Erdal, B., Kustimur, S. and Imir, T. (2009). Effects of Saccharomyces boulardii on cytokine secretion from intraepithelial lymphocytes infected by Escherichia coli and Candida albicans. Mycoses, 52(1), 29-34, doi: https://doi.org/10.1111/j.1439-0507.2008.01545.x.
Gilliland, S.E., Staley, T.E. and Bush, L.J. (1984). Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. Journal of Dairy Science, 67(12), 3045-3051, doi: https://doi.org/10.3168/jds.S0022-0302(84)81670-7.
Gil-Rodríguez, A.M. and Garcia-Gutierrez, E. (2021). Antimicrobial mechanisms and applications of yeasts. Advances in Applied Microbiology, 114, 37-72, doi: https://doi.org/10.1016/bs.aambs.2020.11.002.
Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology, 15, 55-63.
Hyronimus, B., Le-Marrec, C., Sassi, A.H. and Deschamps, A. (2000). Acid and bile tolerance of spore-forming lactic acid bacteria. International Journal of Food Microbiology, 61(2-3), 193-197, doi: https://doi.org/10.1016/s0168-1605(00)00366-4.
Jacobsen, C.N., Nielsen, V.R., Hayford, A.E., Møller, P.L., Michaelsen, K.F., Paerregaard, A., Sandstrom, B., Tvede, M. and Jakobsen, M. (1999). Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Applied and Environmental Microbiology, 65(11), 4949-4956, doi: https://doi.org/10.1128/AEM.65.11.4949-4956.1999.
Kingkaew, E., Konno, H., Hosaka, Y., Phongsopitanun, W. and Tanasupawat, S. (2022). Distribution, cholesterol-lowering and immunomodulation effects of lactic acid bacteria from fermented mussel (Hoi-dong). Heliyon, 8(12), doi: https://doi.org/10.1016/j.heliyon.2022.e12272.
Lad, V., Panchal, D., Pithawala, M., Dwivedi, M.K. and Amaresan, N. (2022). Determination of hemolytic activity in biosafety assessment of probiotic potential. In Dwivedi, M.K., Amaresan, N., Sankaranarayanan, A. and Begum, R. (Eds.). Biosafety assessment of probiotic potential, methods and protocols in food science, pp. 43-46. New York: Humana.
Lõoke, M., Kristjuhan, K. and Kristjuhan, A. (2011). Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques, 50(5), 325-328, doi: https://doi.org/10.2144/000113672.
Maciel, N.O.P., Johann, S., Brandão, L.R., Kucharíková, S., Morais, C.G., Oliveira, A.P., Freitas, G.J.C., Borelli, B.M., Pellizzari, F.M., Santos, D.A., Van Dijck, P. and Rosa, C.A. (2019). Occurrence, antifungal susceptibility, and virulence factors of opportunistic yeasts isolated from Brazilian beaches. Memórias do Instituto Oswaldo Cruz, 114, doi: https://doi.org/10.1590/0074-02760180566.
Pinloche, E., McEwan, N., Marden, J.P., Bayourthe, C., Auclair, E. and Newbold, C.J. (2013). The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. Plos One, 8(7), doi: https://doi.org/10.1371/journal.pone.0067824.
Qiu, J.E., Zhao, L., Jiang, S., Godana, E.A., Zhang, X. and Zhang, H. (2022). Efficacy of Meyerozyma caribbica in the biocontrol of blue mold in kiwifruit and mechanisms involved, Biological Control. 173, doi: https://doi.org/10.1016/j.biocontrol.2022.105000.
Rajkowska, K. and Kunicka-Styczyńska, A. (2012). Probiotic activity of Saccharomyces cerevisiae var. boulardii against human pathogens. Food Technology and Biotechnology, 50(2), 230-236.
Retta, K.S. (2016). Role of probiotics in rumen fermentation and animal performance: A review. International Journal of Livestock Production, 7(5), 24-32, doi: https://doi.org/10.5897/IJLP2016.0285.
Rocha-Ramírez, L.M., Hernández-Ochoa, B., Gómez-Manzo, S., Marcial-Quino, J., Cárdenas-Rodríguez, N., Centeno-Leija, S. and García-Garibay, M. (2020). Evaluation of immunomodulatory activities of the heat-killed probiotic strain Lactobacillus casei IMAU60214 on macrophages in vitro. Microorganisms, 8(1), doi: https://doi.org/10.3390/microorganisms8010079.
Roselli, M., Finamore, A., Britti, M.S. and Mengheri, E. (2006). Probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli K88. British Journal of Nutrition, 95(6), 1177-1184, doi: https://doi.org/10.1079/BJN20051681.
Sridevi, B. and Charya, M.A.S. (2011). Isolation, identification and screening of potential cellulase-free xylanase producing fungi. African Journal of Biotechnology, 10(22), 4624-4630.
Syal, P. and Vohra, A. (2013). Probiotic potential of yeasts isolated from traditional Indian fermented foods. International Journal of Microbiology Research, 5(2), 390-398, doi: http://dx.doi.org/10.9735/0975-5276.5.2.390-398.
Tamura, K., Stecher, G. and Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027, doi: https://doi.org/10.1093/molbev/msab120.
Wang, H., Chen, G., Li, X., Zheng, F. and Zeng, X. (2020). Yeast β-glucan, a potential prebiotic, showed a similar probiotic activity to inulin. Food and Function, 11(12), 10386-10396, doi: https://doi.org/10.1039/d0fo02224a.
Weinstein, M.P. and Lewis, J.S. (2020). The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: Background, organization, functions, and processes. Journal of Clinical Microbiology, 58(3), doi: https://doi.org/10.1128/jcm.01864-19.