Enzyme Selection for Cobia Fish (Rachycentron canadum) Protein Hydrolysate Using a Multiple Criteria Decision-Making Approach

Main Article Content

Thunchanok Sirimek
Pimpen Pornchaloempong

บทคัดย่อ

This study applied the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), a Multi-Criteria Decision Making (MCDM) method, to identify the most suitable enzyme for producing protein hydrolysates from Cobia fish (Rachycentron canadum). Ten commercial enzymes were evaluated based on yield, protein concentration, and sensory attributes, including fishy odor and bitterness, which are critical to consumer acceptance. As the hydrolysates are intended for direct consumption in fish broth, sensory factors were prioritized. The results identified the enzyme PRNY-10 as the optimal choice, offering the closest alignment with the ideal solution.

Article Details

รูปแบบการอ้างอิง
Sirimek, T., & Pornchaloempong, P. (2025). Enzyme Selection for Cobia Fish (Rachycentron canadum) Protein Hydrolysate Using a Multiple Criteria Decision-Making Approach. วารสารสมาคมวิศวกรรมเกษตรแห่งประเทศไทย, 31(1), 1–8. สืบค้น จาก https://li01.tci-thaijo.org/index.php/TSAEJ/article/view/266036
ประเภทบทความ
Post-harvest and food engineering

เอกสารอ้างอิง

- Abd El-Rady, T. K., Tahoun, A. A. M., Abdin, M., & Amin, H. F. (2023). Effect of different hydrolysis methods on composition and functional properties of fish protein hydrolysate obtained from bigeye tuna waste. International Journal of Food Science and Technology, 58(12), 6552-6562.

- AOAC, 1993 AOAC Official methods of analysis (14th Ed.), II, Association of Official Analytical Chemistry, USA (1993)

Aspevik, T., Steinsholm, S., Vang, B., Carlehög, M., Arnesen, J. A., & Kousoulaki, K. (2021). Nutritional and sensory properties of protein hydrolysates based on salmon (Salmo salar), mackerel (Scomber scombrus), and herring (Clupea harengus) heads and backbones. Frontiers in Nutrition, 8, 695151.

- Chalamaiah, M., Hemalatha, R., & Jyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food chemistry, 135(4), 3020-3038.

- Daher, D., Deracinois, B., Baniel, A., Wattez, E., Dantin, J., Froidevaux, R., & Flahaut, C. (2020). Principal component analysis from mass spectrometry data combined to a sensory evaluation as a suitable method for assessing bitterness of enzymatic hydrolysates produced from micellar casein proteins. Foods, 9(10), 1354.

- Dauksas, E., Slizyte, R., Rustad, T., & Storro, I. (2004). Bitterness in fish proteinhydrolysates and methods for removal. Journal of Aquatic Food Product Technology, 13(2), 101-114.

- Dinakarkumar, Y., Krishnamoorthy, S., Margavelu, G., Ramakrishnan, G., & Chandran, M. (2022). Production and characterization of fish protein hydrolysate: Effective utilization of trawl by-catch. Food Chemistry Advances, 1, 100138.

- Elavarasan, K., Naveen Kumar, V., & Shamasundar, B. A. (2014). Antioxidant and functional properties of fish protein hydrolysates from fresh water carp (C Atla Catla) as influenced by the Nature of Enzyme. Journal of Food Processing and Preservation, 38(3), 1207-1214.

- Fu, Y., Chen, J., Bak, K. H., & Lametsch, R. (2019). Valorisation of protein hydrolysates from animal by‐products: perspectives on bitter taste and debittering methods: a review. International Journal of Food Science & Technology, 54(4), 978-986.

- Gan, R., He, Y., & Li, Y. (2022). Structural characteristics of taste active peptides in protein hydrolysates from tilapia by-products. Journal of Food Measurement and Characterization, 16(2), 1674-1687.

- Ganeko, N., Shoda, M., Hirohara, I., Bhadra, A., Ishida, T., Matsuda, H., et al. Matoba, T. (2008). Analysis of volatile flavor compounds of sardine (Sardinops melanostica) by solid phase microextraction. Journal of Food Science, 73(1), S83eS88. http://dx.doi.org/10.1111/j.1750-3841.2007.00608.x.

- Hedayati, S., Ansari, S., Javaheri, Z., Golmakani, M. T., & Ansarifar, E. (2022). Multi-objective optimization of cakes formulated with fig or date syrup and different hydrocolloids based on TOPSIS. LWT, 171, 114088.

- Hedayati, S., Niakousari, M., Damyeh, M. S., Mazloomi, S. M., Babajafari, S., & Ansarifar, E. (2021). Selection of appropriate hydrocolloid for eggless cakes containing chubak root extract using multiple criteria decision-making approach. LWT, 141, 110914.

- Holt, G. J., Faulk, C. K., & Schwarz, M. H. (2007). A review of the larviculture of Cobia (Rachycentron canadum), a warm water marine fish. Aquaculture, 268(1-4), 181-187.

- Hu, Y., Xiao, N., Ye, Y., & Shi, W. (2022). Fish proteins as potential precursors of taste‐active compounds: an in silico study. Journal of the Science of Food and Agriculture, 102(14), 6404-6413.

- Idowu, A. T., & Benjakul, S. (2019). Bitterness of fish protein hydrolysate and its debittering prospects. Journal of Food Biochemistry, 43(9), e12978.

- Kouakou, C., Bergé, J. P., Baron, R., Lethuaut, L., Prost, C., & Cardinal, M. (2014). Odor modification in salmon hydrolysates using the Maillard reaction. Journal of Aquatic Food Product Technology, 23(5), 453-467.

- Lauteri, C., Ferri, G., Piccinini, A., Pennisi, L., & Vergara, A. (2023). Ultrasound technology as inactivation method for foodborne pathogens: A review. Foods, 12(6), 1212.

- Nazeer, R. A., & Anila Kulandai, K. (2012). Evaluation of antioxidant activity of muscle and skin protein hydrolysates from giant kingfish, Caranx ignobilis (Forsskål, 1775). International journal of food science & technology, 47(2), 274-281.

- Noman, A., Noman, A., Ali, A. H., AL-Bukhaiti, W. Q., Mahdi, A. A., & Xia, W. (2020). Structural and physicochemical characteristics of lyophilized Chinese sturgeon protein hydrolysates prepared by using two different enzymes. Journal of Food Science, 85(10), 3313–3322. https://doi.org/10.1111/1750-3841.15345

- Prihanto, A. A., Nurdiani, R., & Bagus, A. D. 2019. Production and characteristics of fish protein hydrolysate from parrotfish (Chlorurus sordidus) head. PeerJ, 7, e8297.

- Roslan, J., Yunos, K. F. M., Abdullah, N., & Kamal, S. M. M. (2014). Characterization of fish protein hydrolysate from tilapia (Oreochromis niloticus) by-product. Agriculture and Agricultural Science Procedia, 2, 312-319.

- Siddik, M. A., Howieson, J., Fotedar, R., & Partridge, G. J. (2021). Enzymatic fish protein hydrolysates in finfish aquaculture: a review. Reviews in Aquaculture, 13(1), 406-430.

- Steinsholm, S., Oterhals, Å., Underhaug, J., Måge, I., Malmendal, A., & Aspevik, T. (2020). Sensory assessment of fish and chicken protein hydrolysates. Evaluation of NMR metabolomics profiling as a new prediction tool. Journal of Agricultural and Food Chemistry, 68(12), 3881-3890.

- Sujith, P. A., & Hymavathi, T. V. (2011). Recent developments with debittering of protein hydrolysates. As J Food Ag-Ind, 4, 365-381.

- Taherdoost, H., & Madanchian, M. (2023). Multi-criteria decision making (MCDM) methods and concepts. Encyclopedia, 3(1), 77-87.

Thermo Fisher Scientific. (2024). Pierce™ BCA Protein Assay Kit (No. 23227). Thermo Fisher Scientific. Available at: https://www.thermofisher.com/order/catalog/product/23227

- Wong, T. M., Kerr, P. S., Ghosh, P., Lombardi, J. F., Maldonado, Y., Lynglev, G. B., ... & Oestergaard, P. R. (2015). U.S. Patent No. 9,034,402. Washington, DC: U.S. Patent and Trademark Office.