การศึกษาความสัมพันธ์เชื่อมโยงในจีโนมสำหรับลักษณะสุขภาพเต้านมของโคนมไทยโดยใช้วิธีการแบบขั้นตอนเดียวที่มีการถ่วงน้ำหนักด้วยโมเดลวันทดสอบการถดถอยแบบสุ่ม
Main Article Content
บทคัดย่อ
การศึกษาความสัมพันธ์ทั่วทั้งจีโนม (GWAS) เป็นเครื่องมือที่มีประสิทธิภาพในการระบุบริเวณดีเอ็นเอบนจีโนม และความผันแปรทางพันธุกรรมที่เกี่ยวข้องกับลักษณะฟีโนไทป์ อย่างไรก็ตามผลการศึกษาอาจไม่สอดคล้องกันจากประชากรเป้าหมายที่แตกต่างกันการศึกษาครั้งนี้มีวัตถุประสงค์เพื่อจำแนกบริเวณดีเอ็นเอบนจีโนมที่เกี่ยวข้องกับลักษณะสุขภาพเต้านมในประชากรโคนมไทย และใช้บริเวณดีเอ็นเอบนจีโนมที่ได้ระบุหายีนและกลไกทางชีววิทยาของยีนที่มีอิทธิพลต่อลักษณะเหล่านี้ ชุดข้อมูลที่ศึกษาประกอบด้วยข้อมูลคะแนนเซลล์โซมาติกในวันทดสอบ (TD-SCS) รายเดือน จำนวน 82,378 บันทึก ข้อมูลจีโนไทป์ได้จากการตรวจหาข้อมูลความแตกต่างทางพันธุกรรมในระดับจีโนมด้วย Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA, USA) หลังจากผ่านการควบคุมคุณภาพแล้วคงเหลือ SNPs ที่เข้าวิเคราะห์ทั้งหมด 41,930 SNPs จากสัตว์ที่มีข้อมูล SNPs และฟีโนไทป์จำนวน 632 ตัว ประเมินผลกระทบของ SNPs (SNP effect) โดยใช้วิธีการแบบขั้นตอนเดียวที่มีการถ่วงน้ำหนัก (WssGWAS) ด้วยโมเดลวันทดสอบการถดถอยแบบสุ่ม เพื่อระบุหายีนที่สำคัญเกี่ยวข้องกับลักษณะที่ศึกษาจะใช้บริเวณดีเอ็นเอบนจีโนมที่ได้อธิบายความแปรปรวนทางพันธุกรรมทั้งหมดไม่น้อยกว่า 0.5% บริเวณดีเอ็นเอบนจีโนมหลักที่เกี่ยวข้องกับคะแนนเซลล์โซมาติก (SCS) พบอยู่บนโครโมโซม BTA 11, 16 และ 21 บริเวณจีโนมหลายแห่งได้อธิบายถึงความแปรปรวนทางพันธุกรรมเพียงเล็กน้อย ซึ่งบ่งชี้ถึงการถ่ายทอดทางพันธุกรรมของลักษณะที่ศึกษาที่ควบคุมด้วยยีนหลายยีน เมื่อเปรียบเทียบผลลัพธ์กับฐานข้อมูล (NCBI, Genecards และ UniProt) พบว่ามี 20 ยีนที่มีรายงานเกี่ยวข้องกับภูมิคุ้มกันที่มีอิทธิพลต่อ SCS อย่างมีนัยสำคัญ เช่น ยีนในกลุ่ม Interleukin superfamily (IL1A, IL1B, IL1F10, IL36A, IL36B, IL36G และ IL37) รวมทั้งยีนอื่น ๆ (MIA3, PPP1R13B และ TRAF3) เครือข่ายทางชีวภาพสำหรับกลุ่มยีนของ SCS เกี่ยวข้องกับระบบภูมิคุ้มกัน เช่น การกระตุ้นการทำงานของเซลล์เม็ดเลือดขาว ยีนที่ระบุได้ในการศึกษานี้สามารถใช้เป็นยีนเป้าหมายในการศึกษาการแสดงออกของยีน ซึ่งจำเป็นต้องมีการศึกษาเพิ่มเติมเมื่อมีจำนวนสัตว์ ข้อมูล และจีโนไทป์เพิ่มขึ้น เพื่อตรวจสอบความถูกต้องของการค้นพบในครั้งนี้
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
สายัณห์ บัวบาน เกียรติศักดิ์ เหล็งหนูดำ และมนต์ชัย ดวงจินดา. 2563. การประมาณค่าพารามิเตอร์ทางพันธุกรรม และค่าแนวโน้มทางพันธุกรรมสำหรับลักษณะความต้านทานเต้านมอักเสบของแม่โคนมไทยโดยใช้ข้อมูลในวันทดสอบ. แก่นเกษตร. 48 (1): 23-34.
Aguilar, I., I. Misztal, D. Johnson, A. Legarra, S. Tsuruta, and T. Lawlor. 2010. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science. 93: 743–752.
Aguilar, I., I. Misztal, S. Tsuruta, A. Legarra, and H. Wang. 2014. PREGSF90-POSTGSF90: Computational tools for the implementation of single-step genomic selection and genome-wide association with ungenotyped individuals in BLUPF90 programs. Pages 1-3 in Proceedings of the 10th World Congress on Genetics Applied to Livestock Production., Vancouver, BC, Canada. American Society of Animal Science, Champaign, IL.
Alhussien, M. N. and A. K. Dang. 2018. Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Veterinary World. 11: 562-577.
Ali, A.K. A. and G. E. Shook. 1980. An optimum transformation for somatic cell concentration in milk. Journal of Dairy Science. 63: 487-490.
Benveniste, E. N. 2014. Cytokines. Pages 921-925 in Encyclopedia of the Neurological Sciences. 2nd ed. Academic Press, Oxford.
Bergstralh, D. T., B. J. Conti, C. B. Moore, W. J. Brickey, D. J. Taxman, and J. P. Y. Ting. 2007. Global functional analysis of nucleophosmin in Taxol response, cancer, chromatin regulation, and ribosomal DNA transcription. Experimental Cell Research. 313: 65-76.
da Costa Barros, C., D. J. de Abreu Santos, R. R. Aspilcueta-Borquis, G. M. F. de Camargo, F. R. de Araújo Neto, and H. Tonhati. 2018. Use of single-step genome-wide association studies for prospecting genomic regions related to milk production and milk quality of buffalo. Journal of Dairy Research. 85: 402-406.
Daniele, B. D. M., Marques, J. W. M. Bastiaansen, M. L. W. J. Broekhuijse, M. S. Lopes, E. F. Knol, B. Harlizius, S. E. F. Guimarães, F. F. Silva and P. S. Lopes. 2018. Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs. Genetics Selection Evolution. 50: 40.
De Klerk, B., M. Emam, K. A. Thompson-Crispi, M. Sargolzaei, J. J. van der Poel, and B. A. Mallard. 2018. A genome-wide association study for natural antibodies measured in blood of Canadian Holstein cows. BMC Genomics. 19: 694.
Falconer, D.S. and T.F.C. Mackay. 1996. Introduction to quantitative genetics. 4th ed. Addison Wesley Longman Ltd, Essex, England.
Fan B., S.K. Onteru, Z.Q. Du, D.J. Garrick, K.J. Stalder, and M.F. Rothschild. 2011. Genome-wide association study identifies loci for body composition and structural soundness traits in pigs. PloS one. 6:e14726.
Fragomeni, B. O., I. Misztal, D. L. Lourenco, I. Aguilar, R. Okimoto and W. M. Muir. 2014. Changes in variance explained by top SNP windows generations for three traits in broiler chicken. Frontiers in Genetics. 5:332.
Garcia, A. L. S., B. Bosworth, G. Waldbieser, I. Misztal, S. Tsuruta, and D. A. L. Lourenco. 2018. Development of genomic predictions for harvest and carcass weight in channel catfish. Genetics Selection Evolution. 50: 66.
Gengler, N., A. Tijani, G. R. Wiggans, and I. Misztal. 1999. Estimation of (co)variance function coefficients for test day yield with an expectation maximization restricted maximum likelihood algorithm. Journal of Dairy Science. 82: 1849-1871.
Hayes, B. J., and M. Goddard. 2010. Genome-wide association and genomic selection in animal breeding. Genome. 53(11): 876-83.
Hirschhorn J.N., and M.J. Daly. 2005. Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics. 6: 95-108.
Howard, J. T., S. Shihui Jiao, F. Tiezzi, Y. Huang, K. A. Gray, and C. Maltecca. 2015. Genome-wide association study on legendre random regression coefficients for the growth and feed intake trajectory on Duroc Boars. BMC Genetic. 16: 59.
Huang, W., B. T. Sherman, and R. A. Lempicki. 2009a. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protocols. 4: 44-57.
Huang, W., B. T. Sherman, and R. A. Lempicki. 2009b. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research. 37: 1-13.
Irano N., G. M. de Camargo, R. B. Costa, A. P. Terakado, A. F. Magalhaes, R. M. Silva, M. M. Dias , A. B. Bignardi, F. Baldi, R. Carvalheiro, H. N., and de L. G. Albuquerque. 2016. Genome-wide association study for indicator traits of sexual precocity in Nellore cattle. PloS one. 11: e0159502.
Jamrozik, J., L. R. Schaeffer, and J. C. M. Dekkers. 1997. Genetic evaluation of dairy cattle using test day yields and random regression model. Journal of Dairy Science. 80: 1217-1226.
Johansson A.M., M.E. Pettersson, P.B. Siege, and O. Carlborg. 2010. Genome-wide effects of long-term divergent selection. PloS Genetics. 6: e1001188.
Johnston, D., I. Malo Estepa, H. A. Ebhardt, M. A. Crowe, and M. G. Diskin. 2018. Differences in the bovine milk whey proteome between early pregnancy and the estrous cycle. Theriogenology. 114: 301-307.
Kang, H., L. Zhou, R. Mrode, Q. Zhang, and J. F. Liu. 2017. Incorporating the single-step strategy into a random regression model to enhance genomic prediction of longitudinal traits. Heredity. 119: 459-467.
Koks, S., R. Lilleoja, E. Reimann, A. Salumets, P. Reemann, and Ü. Jaakma. 2013. Sequencing and annotated analysis of the Holstein cow genome. Mammalian Genome. 24: 309-321.
Lee, S., C. Dang, Y. Choy, C. Do, K. Cho, J. Kim, Y. Kim, and J. Lee. 2019. Comparison of genome-wide association and genomic prediction methods for milk production traits in Korean Holstein cattle. Asian-Australasian Journal of Animal Sciences. 32: 913-921.
Legarra A., C. Robert-Granié, E. Manfredi, J.M. Elsen. 2008. Performance of genomic selection in mice. Genetics. 180: 611-618.
Legarra, A., D.A. Lourenco, Z. Vitezica. 2018. Bases for genomic prediction 2018. Available: http://genow eb.toulo use.inra.fr/~alega rra/GSIP.pdf. Accessed 10 Oct 2018.
Lemos, M. V. A., H. L. J. Chiaia, M. P. Berton, F. L. B. Feitosa, C. Aboujaoude, G. M. F. Camargo, A. S. C. Pereira, L. G. Albuquerque, A. M. Ferrinho, L. F. Mueller, M. R. Mazalli, J. J. M. Furlan, R. Carvalheiro, D. G. M. Gordo, R. Tonussi, R. Espigolan, R. M. O. Silva, H. N. Oliveira, S. Duckett, I. Aguilar, and F. Baldi. 2016. Genome-wide association between single nucleotide polymorphisms with beef fatty acid profile in Nellore cattle using the single step procedure. BMC Genomics. 17: 213.
Liu, Z.J., X. Lu, and S. Zhong. 2005. ASPP-Apoptotic specific regulator of p53. Biochimica et Biophysica Acta. 1756: 77-80.
Lourenco, D. A. L., B. O. Fragomeni, H. L. Bradford, I. R. Menezes, J. B. S. Ferraz, I. Aguilar. 2017. Implications of SNP weighting on single-step genomic predictions for different reference population sizes. Journal of Animal Breeding and Genetics. 134: 463–71.
Melo, T. P., G. M. F. de Camargo, L. G. de Albuquerque, and R. Carvalheiro. 2017. Genome-wide association study provides strong evidence of genes affecting the reproductive performance of Nellore beef cows. PloS one. 12: e0178551.
Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 157: 1819-1829.
Misztal, I., S. Tsuruta, D. A. L. Lourenco, Y. Masuda, I. Aguilar, A. Legarra, and Z. Vitezica. 2018. Manual for BLUPF90 family of programs. Vol. 2018 Animal and Dairy Science Department, Georgia. Available: http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all7.pdf. Accessed February 1, 2018
Mitchell, R. A., H. Liao, J. Chesney, G. Fingerle-Rowson, J. Baugh, J. David, and R. Bucala. 2002. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: Regulatory role in the innate immune response. Proceedings of the National Academy of Sciences of the United States of America.
Oliveira H. R., F. F. Silva, L. F. Brito, J. Jamrozik, D. A. L. Lourenco and F. S. Schenkel. 2018. Genome-wide association study for milk, fat and protein yields in different lactation stages in Canadian Holstein and Jersey cattle. No. 11.601. Proceedings of the 11th World Congress on Genetics Applied to Livestock Production., Auckland, New Zealand.
Oliveira, H. R., D. A. L. Lourenco, Y. Masuda, I. Misztal, S. Tsuruta, J. Jamrozik, L. F. Brito, F. F. Silva, J. P. Cant, and F. S. Schenkel. 2019. Single-step genome-wide association for longitudinal traits of Canadian Ayrshire, Holstein, and Jersey dairy cattle. Journal of Dairy Science. 102: 9995-10011.
Oliveira, H. R., F. F. Silva, M. V. G. B. Silva, O. H. G. B. D. Siqueira, M. A. Machado, J. C. C. Panetto, L. S. Gloria, and L. F. Brito. 2017. Bayesian models combining Legendre and B-spline polynomials for genetic analysis of multiple lactations in Gyr cattle. Livestock Science. 201: 78–84.
Porat-Shliom, N., O. Milberg, A. Masedunskas, and R. Weigert. 2013. Multiple roles for the actin cytoskeleton during regulated exocytosis. Cellular and Molecular Life Sciences. 70: 2099-2121.
Queen, D., C. Ediriweera, and L. Liu. 2019. Function and regulation of IL-36 signaling in inflammatory diseases and cancer development. Frontiers in Cell and Developmental Biology. 7: 317-317.
Rossetti, S., A. J. Wierzbicki, and N. Sacchi. 2016. Mammary epithelial morphogenesis and early breast cancer. Evidence of involvement of basal components of the RNA Polymerase I transcription machinery. Cell Cycle. 15: 2515-2526.
Rupp R., and D. Boichard. 2003. Genetics of resistance to mastitis in dairy cattle. Veterinary Research. 34: 671-688.
Seegers, H., C. Fourichon, and F. Beaudeau. 2003. Production effects related to mastitis and mastitis economics in dairy cattle herds. Veterinary Research. 34: 475–491.
Silva, M.V.B., D.J.A. dos Santos, S.A. Boison, A.T.H. Utsunomiya, A.S. Carmo, T.S. Sonstegard, J.B. Cole, and C.P. Van Tassell. 2014. The development of genomics applied to dairy breeding. Livestock Science. 166: 66–75.
Silva, R. M. O., N. B. Stafuzza, B. O. Fragomeni, G. M. F. Camargo, T. M. Ceacero, J. N. S. G. Cyrillo, F. Baldi, A. A. Boligon, M. E. Z. Mercadante, D. L. Lourenco, I. Misztal, and L. G. Albuquerque. 2017. Genome-wide association study for carcass traits in an experimental Nelore cattle population. PloS one. 12: e0169860.
Silva, R. P., M. P. Berton, L. Grigoletto, F. E. Carvalho, R. M. O. Silva, E. Peripolli, L. M. Castro, J. B. S. Ferraz, J. P. Eler, R. B. Lobo, and F. Baldi. 2019. Genomic regions and enrichment analyses associated with carcass composition indicator traits in Nellore cattle. Journal of Animal Breeding and Genetics. 136: 118-133.
Snelling W. M., R. Cushman, J. W. Keele, C. Maltecca, M. G. Thomas, M. R. S. Fortes, and A. Reverter. 2013. Networks and pathways to guide genomic selection. Journal of Animal Science. 91: 537-552.
Tiezzi, F., K. L. Parker-Gaddis, J. B. Cole, J. S. Clay, and C. Maltecca. 2015. A Genome-wide association study for clinical mastitis in first parity US Holstein cows using single-step approach and genomic matrix re-weighting procedure. PloS one. 10: e0114919.
Valente, T. S., F. Baldi, A. C. Sant’Anna, L. G. de Albuquerque, and M. J. Paranhos da Costa. 2016. Genome-wide association study between single nucleotide polymorphisms and fight speed in Nellore cattle. PloS one. 11: e0156956.
VanRaden P. M. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science. 91: 4414-4423.
Venturini, G., D. Cardoso, F. Baldi, A. Freitas, R. Aspilcueta-Borquis, D. Santos, G. Camargo, N. Stafuzza, L. Albuquerque, and H. Tonhati. 2014. Association between single-nucleotide polymorphisms and milk production traits in buffalo. Genetics and Molecular Research. 13: 10256-10268.
Wang H., I. Misztal, I. Aguilar, A. Legarra, R.L. Fernando, Z. Vitezica, R. Okimoto R, T. Wing, R. Hawken, and W.M. Muir. 2014. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS)for 6-week body weight in broiler chickens. Frontiers in Genetics. 5: 1-8.
Wang, H., I. Misztal, I. Aguilar, A. Legarra, and W. M. Muir. 2012. Genome-wide association mapping including phenotypes from relatives without genotypes. Genetics Research. 94: 73-83.
Warde-Farley D., S. L. Donaldson, O. Comes, K. Zuberi, R. Badrawi, P. Chao, Franz M., C. Grouios, F. Kazi, C. T. Lopes, A. Maitland, S. Mostafavi, J. Montojo, Q. Shao, G. Wright, G.D. Bader, Q. Morris. 2010. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research. 38: 214-220.
Williams, T. and C. Kelley. 2019. User manual gnuplot version 5.2: An Interactive Plotting Program. Available: http://www.gnuplot.info/docs_5.2/Gnuplot_5.2.pdf. Accessed February 1, 2018.
Wu, P., Q. Yang, K. Wang, J. Zhou, J. Ma, Q. Tang, L. Jin, W. Xiao, A. Jiang, Y. Jiang, L. Zhu, X. Li, and G. Tang. 2018. Single step genome wide association studies based on genotyping by sequence data reveals novel loci for the litter traits of domestic pigs. Genomics. 110: 171-179.
Xiong, Y., L. Wang, E. Di Giorgio, T. Akimova, U. H. Beier, R. Han, M. Trevisanut, J. H. Kalin, P. A. Cole, and W. W. Hancock. 2020. Inhibiting the coregulator CoREST impairs Foxp3+ Treg function and promotes antitumor immunity. Journal of Clinical Investigation. 130: 1830-1842.
Yao, H., D. C. Goldman, G. Fan, G. Mandel, and W. H. Fleming. 2015. The corepressor Rcor1 is essential for normal myeloerythroid lineage differentiation. Stem Cells. 33: 3304-3314.
Zhang, Q., B. Guldbrandtsen, J. R. Thomasen, M. S. Lund, and G. Sahana. 2016. Genome-wide association study for longevity with whole genome sequencing in 3 cattle breeds. Journal of Dairy Science. 99: 7289-7298.
Zhang, Z., J. Liu, X. Ding, P. Bijma, D. J. de Koning, and Q. Zhang. 2010. Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. PLoS One. 5: e12648.
Zhou, C., C. Li, W. Cai, S. Liu, H. Yin, S. Shi, Q. Zhang and S. Zhang. 2019. Genome-wide association study for milk protein composition traits in a Chinese Holstein population using a single-step approach. Frontiers in Genetics. 10: 72.