Proteomic analysis of isogenic rice lines under brown planthopper infestation

Main Article Content

Wanwarang Pathichindachote
Natjaree Panyawut
Kannika Sikaewtung
Sriprapai Chakhonkaen
Suthathi Kittisenachai
Yodying Yingchutrakul
Watchareewan Jamboonsri
Wintai Kamolsukyunyong
Sittiruk Roytrakul
Sujin Patarapuwadol
Amorntip Muangprom

บทคัดย่อ

The brown planthopper (BPH) is a major rice pest in Thailand. In this study, comparative proteomic analysis was applied to investigate total protein expression of rice plants under BPH infestation. Proteomic profiles of 2 contrasts BC3F5 isogenic lines including BIL15 (resistant-harboring QTL from Chr6), and BIL7 (susceptible-without any QTL) derived from Rathu Heenati (RH, BPH-resistant-donor) and KDML105 (Thai Jasmine rice-BPH-susceptible-recipient) were compared. The total expressed proteins were extracted from all the above ground portion of 25 day-old seeding, with and without BPH infestation at 3 and 24 hours after infestation (HAI). Proteomic analysis could define some interested candidate BPH responsive proteins specifically expressed in the resistant rice line (PSER). For early response investigation, the PSER under BPH treatment at 3 hours after infestation (PSER3) were focused and identified some interesting proteins such as wall-associated receptor kinase 2 (WAK2), serine/threonine-protein kinase OXI1 (OXI1) and TPR domain containing protein.  WAK2 could perceive free calcium ion or pectin leaked from wounding cell wall following transfer signaling to MAPK cascade by its kinase activity. OXI1 contained kinase activity might play a role in MAPK signaling pathway. TPR domain containing protein could facilitate BPH defense through wax production which perturb insect-plant physical interaction. In conclusion, the identified PSER3 might initiate plant immune system through MAPK cascades. MAPK signaling might regulate expression of some defense related-functional proteins and related-transcription factors. The information obtained could further contribute for selecting potential candidate genes to develop effective functional markers. The potential resistance genes could facilitate for BPH resistant rice improvement using marker-assisted selection or genetic engineering.

Article Details

บท
บทความวิจัย (research article)

References

Abere, B., N. Wikan, S. Ubol, P. Auewarakul, A. Paemanee, S. Kittisenachai, S. Roytrakul, and D.R. Smith. 2012. Proteomic analysis of chikungunya virus infected microgial cells. PLOS ONE. 7: e34800.

Agrawal, G.K., N. S. Jwa, and R. Rakwal. 2009. Rice proteomics: Ending phase I and the beginning of phase II. Proteomics. 9: 935-963.

Anami, B. S., N. N. Malvade, and S. Palaiah. 2020. Classification of yield affecting biotic and abiotic paddy crop stresses using field images. Information Processing in Agriculture. 7: 272-285.

Du, B., R. Chen, J. Guo, and G. He. 2020. Current understanding of the genomic, genetic, and molecular control of insect resistance in rice. Molecular Breeding. 40(2): 24-49.

Fairhurst, T., and A. Dobermann. 2002. Rice in the global food supply. Better Crops International. 16. (special supplement): 3-6.

Guo, J., C. Xu, D. Wu, Y. Zhao, Y. Qiu, B. Du, X. Wang, Y. Ouyang, S. Jing, X. Shangguan, H. Wang, Y. Ma, L. Hu, Y. Wu, S. Shi, W. Wang, L. Zhu, X. Xu, R. Chen, Y. Feng, B. Cai, X. Liu, and G. He. 2018. Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice. Nature Genetics. 50: 297-306.

Gupta, M. K., R. Vadde, G. Gouda, R. Donde, J. Kumar, and L. Behera. 2019. Computational approach to understand molecular mechanism involved in BPH resistance in Bt- rice plant. Journal of Molecular Graphics and Modelling. 88: 209-220.

Hao, P., C. Liu, and Y. Wang. 2008. Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Plant physiology. 146: 1810-1820.

Hu, G., F. Lu, B. P. Zhai, M. H. Lu, W. C. Liu, F. Zhu, X. W. Wu, G. H. Chen, and X. X. Zhang. 2014. Outbreaks of the brown planthopper Nilaparvata lugens (Stål) in the Yangtze river delta: immigration or local reproduction? PLOS ONE. 9: e88973.

Hu, J., C. Xiao, and Y. He. 2016. Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice. Rice. 9: 30-42

Huang, H. J., Y. Y. Bao, S. H. Lao, X. H. Huang, Y. Z. Ye, J. X. Wu, H. J. Xu, X. P. Zhou, and C. X. Zhang. 2015. Rice ragged stunt virus-induced apoptosis affects virus transmission from its insect vector, the brown planthopper to the rice plant. Scientific Reports. 5: 102–118

Jairin, J., T. Toojinda, S. Tragoonrung, S. Tayapat, and A. Vanavichit. 2005. Multiple genes determining brown planthopper (Nilaparvata lugens Stal.) resistance in backcross introgressed lines of Thai jasmine rice KDML105. Science Asia. 31: 129-135.

Jairin, J., S. Teangdeerith, P. Leelagud, K. Phengrat, A. Vanavichit, and T. Toojinda. 2007. Detection of brown planthopper resistance genes from different rice mapping populations in the same genomic location. Science Asia. 33: 347-352.

Jairin, J. 2008. High-resolution mapping of a brown planthopper (BPH) resistance gene, Bph3, and marker-assisted selection for BPH resistance in rice. Ph.D. Thesis. Kasetsart University. Nakhon Pathom.

Jairin, J., S. Teangdeerith, P. Leelagud, J. Kothcharerk, K. Sansen, M. Yi, A. Vanavichit, and T. Toojinda. 2009. Development of rice introgression lines with brown planthopper resistance and KDML105 grain quality characteristics through marker-assisted selection. Field Crops Research. 110: 263-271.

Jena, K., and S. M. Kim. 2010. Current status of brown planthopper (BPH) resistance and genetics. Rice. 3: 161-171.

Johansson, C., J. Samskog, L. Sundström, H. Wadensten, L. Björkesten, and J. Flensburg. 2006. Differential expression analysis of Escherichia coli proteins using a novel software for relative quantitation of LC-MS/MS data. Proteomics. 6: 4475-4485.

Kamolsukyunyong, W., W. Sukhaket, V. Ruanjaichon, T. Toojinda, and A. Vanavichit. 2013. Single-feature polymorphism mapping of isogenic rice lines identifies the influence of terpene synthase on brown planthopper feeding preferences. Rice. 6: 18-27.

Kamolsukyeunyong, W., S. Ruengphayak, P. Chumwong, L. Kusumawati, E. Chaichoompu, W. Jamboonsri, C. Saensuk, K. Phoonsiri, T. Toojinda, and A. Vanavichit. 2019. Identification of spontaneous mutation for broad-spectrum brown planthopper resistance in a large, long-term fast neutron mutagenized rice population. Rice. 12(1): 16-42.

Kanehisa, M. and S. Goto. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research. 28: 27-30.

Ko, J. H., J. H. Kim, S. S. Jayanty, G. A. Howe, and K. H. Han. 2006. Loss of function of COBRA, a determinant of oriented cell expansion, invokes cellular defence responses in Arabidopsis thaliana. Journal of Experimental Botany. 57: 2923-2936.

Kohorn, B. D., S. Johansen, A. Shishido, T. Todorova, R. Martinez, E. Defeo and P. Obregon. 2009. Pectin activation of MAP kinase and gene expression is WAK2 dependent. Plant Journal. 60: 974-982.

Kuć, J., and J. S. Rush. 1985. Phytoalexins. Archives of Biochemistry and Biophysics. 236: 455-472.

Kusumawati, L., P. Chumwong, W. Jamboonsri, S. Wanchana, J.L. Siangliw, M. Siangliw, S. Khanthong, A. Vanavichit, W. Kamolsukyeunyong, and T. Toojinda. 2018. Candidate genes and molecular markers associated with brown planthopper (Nilaparvata lugens Stål) resistance in rice cultivar Rathu Heenati. Molecular Breeding. 38: 88-104

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685.

Lewandowska, M., A. Keyl, and I. Feussner. 2020. Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytologist. 227: 698-713.

Liu, Y., H. Wu, H. Chen, Y. Liu, J. He, H. Kang, Z. Sun, G. Pan, Q. Wang, J. Hu, F. Zhou, K. Zhou, X. Zheng, Y. Ren, L. Chen, Y. Wang, Z. Zhao, Q. Lin, F. Wu, X. Zhang, X. Guo, X. Cheng, L. Jiang, C. Wu, H. Wang, and J. Wan. 2014. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nature Biotechnology. 33: 301-305.

Nelson, D.R., M.A. Schuler, S.M. Paquette, D. Werck-Reichhart, and S. Bak. 2004. Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome p450 genes and pseudogenes from a monocot and a dicot. Plant Physiology. 135: 756-772.

Perkins, D. N., D. J. C. Pappin, D. M. Creasy, and J. S. Cottrell. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 20: 3551-3567.

Petersen, L. N., R. A. Ingle, M. R. Knight, and K. J. Denby. 2009. OXI1 protein kinase is required for plant immunity against Pseudomonas syringae in Arabidopsis. Journal of Experimental Botany. 60: 3727-3735.

Polko, J. K., and J. J. Kieber. 2019. The regulation of cellulose biosynthesis in plants. Plant Cell. 31: 282-296.

Ren, J., F. Gao, X. Wu, X. Lu, L. Zeng, J. Lv, X. Su, H. Luo, and G. Ren. 2016. Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Scientific Reports. 6: 37645.

Rentel, M. C., D. Lecourieux, F. Ouaked, S.L. Usher, L. Petersen, H. Okamoto, H. Knight, S. C. Peck, C. S. Grierson, H. Hirt, and M. R. Knight. 2004. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature. 427: 858-861.

Ruskey, F., and M. Weston. 2012. Venn Diagrams. The electronic journal of combinatorics, DS5-Jun.

Schopfer, C.R., and J. Ebel. 1998. Identification of elicitor-induced cytochrome P450s of soybean (Glycine max L.) using differential display of mRNA. Molecular Genetics and Genomics. 258: 315-322.

Sharma, S., R. Kooner, and R. Arora. 2017. Insect pests and crop losses. P. 45-66. In: Arora R., Sandhu S. Breeding insect resistant crops for sustainable agriculture. Springer, Singapore.

Shevchenko, A., H. Tomas, J. Havliš, J. Olsen, and M. Mann. 2007. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols. 1: 2856-2860.

Sogawa, K., and C.H. Cheng. 1979. Economic thresholds, nature of damage, and losses caused by the brown planthopper. P. 125-142. In: International Rice Research Institute. Brown planthopper: Threat to rice production in Asia. International Rice Research Institute, Philippines.

Sriratanasak, W., D. Chettanachit and O. Wattanesk. 2020. Planthopper and virus infections declining in central Thailand. Available: https://ricehopper.wordpress.com/tag/bph-outbreak-in-thailand/. Accessed Oct. 21, 2020.

Stout, M. J. 2014. Chapter 1: Host-plant resistance in pest management. p. 1-21. In: D. P. Abrol. Integrated Pest Management. Academic Press, San Diego.

Szklarczyk, D., A. Santos, C. von Mering, L.J. Jensen, P. Bork, and M. Kuhn. 2016. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Research. 44(D1): D380-D384.

The UniProt Consortium. 2018. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research. 47: D506-D515.

Thorsell, A., E. Portelius, K. Blennow, and A. Westman-Brinkmalm. 2007. Evaluation of sample fractionation using micro-scale liquid-phase isoelectric focusing on mass spectrometric identification and quantitation of proteins in a SILAC experiment. Rapid Communications in Mass Spectrometry. 21: 771-778.

Turathum, B., K. Saikhun, S. Roytrakul, C. Changsangfa, S. Tanasawet, and M. Sroyraya. 2020. Comparative proteomic analysis of mature and immature oocytes in domestic cats. Asian Pacific Journal of Reproduction. 9: 22-30.

Uawisetwathana, U., O. P. Chevallier, Y. Xu, W. Kamolsukyeunyong, I. Nookaew, T. Somboon, T. Toojinda, A. Vanavichit, R. Goodacre, C. T. Elliott, and N. Karoonuthaisiri. 2019. Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary metabolites for both constitutive and inducible defenses. Metabolomics. 15(12): 1-15.

Watanabe, T., M. Matsumura, and A. Otuka. 2009. Recent occurrences of long-distance migratory planthoppers and factors causing outbreaks in Japan. P. 179-190 In: Heong, K. L. and Hardy, B. Planthoppers: New threats to the sustainability of intensive rice production systems in Asia. International Rice Research Institute, Philippines.

Wei, Z., W. Hu, Q. Lin, X. Cheng, M. Tong, L. Zhu, R. Chen, and G. He. 2009. Understanding rice plant resistance to the Brown Planthopper (Nilaparvata lugens): a proteomic approach. Proteomics. 9: 2798-2808.

Wilkins, M. R., J. C. Sanchez, A. A. Gooley, R. D. Appel, I. Humphery-Smith, D. F. Hochstrasser, and K. L. Williams. 1996. Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnology and Genetic Engineering Reviews. 13: 19-50.

Wu, S. F., B. Zeng, C. Zheng, X. C. Mu, Y. Zhang, J. Hu, S. Zhang, C. F. Gao, and J. L. Shen. 2018. The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in the period 2012-2016. Scientific Reports. 8: 4586-4586.

Wu, X., E. Xiong, W. Wang, M. Scali, and M. Cresti. 2014. Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nature Protocols. 9: 362-374.

Xu, J., X. Wang, and W. Guo. 2015. The cytochrome P450 superfamily: Key players in plant development and defense. Journal of Integrative Agriculture. 14: 1673-1686.

Yang, H., A. You, Z. Yang, F. Zhang, R. He, L. Zhu, and G. He. 2004. High-resolution genetic mapping at the Bph15 locus for brown planthopper resistance in rice (Oryza sativa L.). Theoretical and Applied Genetics. 110: 182-191.

Yue, X., X. G. Li, X. Q. Gao, X. Y. Zhao, Y. X. Dong, and C. Zhou. 2016. The Arabidopsis phytohormone crosstalk network involves a consecutive metabolic route and circular control units of transcription factors that regulate enzyme-encoding genes. BMC Systems Biology. 10: 87-105.