การถ่ายทอดลักษณะต้านออกซิเดชันของข้าวกล้องในประชากรข้าวรุ่น F2 จากคู่ผสม “RD41” × “Riceberry”

Main Article Content

ศรัณยู ถาวร
ชนิตา ปาลิยะวุฒิ
วราลักษณ์ เกษตรานันท์

บทคัดย่อ

การศึกษาการถ่ายทอดทางพันธุกรรมของลักษณะต้านออกซิเดชันในข้าวกล้องเป็นข้อมูลพื้นฐานสำคัญเพื่อการประมาณความเป็นไปได้ของการคัดเลือกข้าวที่มีสารต้านออกซิเดชันสูง ในประชากรรุ่นลูกจากคู่ผสม “RD41” × “Riceberry”  ประชากรนี้ได้ถูกสร้างขึ้นและปลูกที่ศูนย์วิจัยข้าวปทุมธานีระหว่างเดือนสิงหาคม 2559 ถึงเดือนธันวาคม 2560 วัตถุประสงค์คือ ศึกษาการถ่ายทอดลักษณะต้านออกซิเดชันของข้าวกล้องในประชากรรุ่น F2 ที่ได้จากคู่ผสม “RD41” (P1) × “Riceberry” (P2) เมล็ดข้าวกล้องของ P1 P2 F1 และ F2 ถูกนำมาสกัดด้วย 1% HCl ในเมธานอล จากนั้น ปริมาณของลักษณะต้านออกซิเดชันที่ประกอบด้วย ปริมาณสารฟีโนลิคทั้งหมด (TPC) ปริมาณสารฟลาโวนอยด์ทั้งหมด (TFC) และปริมาณสารแอนโทไซยานินทั้งหมด (TAC) ส่วนฤทธิ์ต้านออกซิเดชันประกอบด้วยวิธี ABTS radical scavenging (ABTS) และ Ferric reducing antioxidant power (FRAP) ได้ถูกวิเคราะห์ ผลการศึกษา พบว่าสีของเยื่อหุ้มเมล็ดข้าวควบคุมด้วยยีนด้อยสองคู่ ส่วนการกระจายความถี่ของลักษณะต้านออกซิเดชันของข้าวรุ่น F2 เป็นการกระจายอย่างต่อเนื่องและไม่เป็นโค้งปกติ นอกจากนี้ การกระจายตัวยังแสดงว่าเกินขอบเขตของพ่อแม่ สหสัมพันธ์ในเชิงบวกต่อกันสูงระหว่างทุกลักษณะต้านออกซิเดชัน (r=0.910-0.973, p=0.01) ค่าสัมประสิทธิ์ความแปรปรวนเนื่องจากพันธุกรรม (GCV) สัมประสิทธิ์ความแปรปรวนของลักษณะปรากฏ (PCV) อัตราพันธุกรรม (H2) และค่าร้อยละความก้าวหน้าทางพันธุกรรม (%GA) แสดงค่าสูงและอยู่ในช่วงจาก 40.08-117.62  44.13-124.35 0.82-0.94 และ 75.16-229.74 ตามลำดับ และความแตกต่างระหว่าง GCV และ PCV มีค่าต่ำและอยู่ในช่วงจาก 1.57-6.73 ผลการทดลองทั้งหมดเสนอให้เห็นว่าลักษณะต้านออกซิเดชันของประชากรนี้ถูกแสดงออกด้วยการถ่ายทอดเชิงปริมาณของยีนหลายตำแหน่ง ถูกควบคุมด้วยยีนด้อย และถูกบ่งชี้ว่าได้รับอิทธิพลจากยีนมากกว่าสภาพแวดล้อม ดังนั้น จึงมีความเป็นไปได้ของการคัดเลือกพันธุ์ข้าวเพื่อให้มีลักษณะสารต้านออกซิเดชันสูงจากประชากรนี้ได้เป็นผลสำเร็จ

Downloads

Download data is not yet available.

Article Details

บท
บทความวิจัย (research article)

References

กองวิจัยและพัฒนาข้าว. 2563. องค์ความรู้เรื่องข้าว: กข41. กรมการข้าว, กระทรวงการเกษตรและสหกรณ์, กรุงเทพมหานคร. แหล่งข้อมูล: http://www.ricethailand.go.th/rkb3/title-index.php-file=content.php&id=121.htm. ค้นเมื่อ 30 พฤศจิกายน 2563.

พิลาลักษณ์ โพธิ์เพชร, ธีระ เอกสมทราเมษฐ์, และ จักรัตน์ อโณทัย. 2564. ความแปรปรวนทางพันธุกรรม และอัตราพันธุกรรมในปาล์มน้ำมันลูกผสมเทเนอราพันธุ์การค้า. แก่นเกษตร. 49: 856-863.

พิทวัส สมบูรณ์, ชนากานต์ เทโบลต์ พรมอุทัยม, ต่อนภา ผุสดี, และ ศันสนีย์ จำจด. 2560. การกระจายตัวทางพันธุกรรมของปริมาณแอนโทไซยานินในเมล็ดข้าวลูกผสมชั่วที่ 2 ระหว่างข้าวเหนียวดำจากที่สูงและข้าวพันธุ์ปทุมธานี 1 ที่ปลูกที่ลุ่มและที่สูง. วารสารเกษตร. 33: 323-332.

พีรนันท์ มาปัน, สุพรรณิกา ติ๊บขัน, ชนากานต์ เทโบลต์ พรมอุทัย, ดําเนิน กาละดี, และ ศันสนีย์ จําจด. 2557. การคัดเลือกในชั่วต้นเพื่อลักษณะแอนโทไซยานินในเมล็ดสูงและไม่ไวต่อช่วงแสง ในลูกผสมชั่วที่ 2 ระหว่างข้าวพันธุ์ก่ำดอยสะเก็ดและปทุมธานี 1. วารสารนเรศวรพะเยา. 7: 160-171.

อุทุมพร ไทรชมภู, ปุณยาพร พุทธจักรศรี, ชนรดี จันทร์ผ่องศรี, ปพิชญา ทองเทพ, พศวัต นฤมลต์, และ ชเนษฏ์ ม้าลำพอง. 2563. การประเมินพันธุกรรมการเกิดสีที่เยื่อหุ้มเมล็ดและรูปร่างเมล็ดจากประชากรชั่วที่ 2 ที่ได้จากการผสมพันธุ์ระหว่างข้าวจาปอนิกา x อินดิกา. วิทยาศาสตร์เกษตร. 51: 315-320.

Ahmad, M., M. Iqbal, Z. Gul, B. A. Khan, A. Kanwal, M. Saleem, and N. I. Khan. 2016. Genetic analysis of F2 population of tomato for quantitative traits in the cross bushbeef X nagina. Advances in Plants & Agriculture Research. 4: 422-424.

Babu, P. D., R. S. Subhasree, R. Bhakyaraj, and R. Vidhyalakshmi. 2009. Brown rice-beyond the color reviving a lost health food- a review. American-Eurasian Journal of Agronomy. 2: 67-72.

Benzie, I. F. F., and J. J. Strain. 1996. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry. 239: 70-76.

Butsat, S., and S. Siriamornpun. 2010. Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chemistry. 119: 606-613.

Furukawa, T., M. Maekawa, T. Oki, I. Suda, S. Iida, H. Shimada, I. Takamure, and K.-I. Kadowaki. 2007. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. The Plant Journal. 49: 91-102.

Ghasemzadeh, A., M. T. Karbalaii, H. Z. E. Jaafar, and A. Rahmat. 2018. Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran. Chemistry Central Journal. 12: 17.

Globerson, D., A. Genizi, and J. E. Staub. 1987. Inheritance of seed weight in Cucumis sativus (L.) var. sativus and var. hardwickii (Royle) Kitamura. Theoretical and Applied Genetics. 74: 522–526.

Herald, T. J., P. Gadgil, and M. Tilley. 2012. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. Journal of the Science of Food and Agriculture. 92: 2326-2331.

IBM 2013. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.

Jin, L., P. Xiao, Y. Lu, Y. Shao, Y. Shen, and J. Bao. 2009. Quantitative Trait Loci for Brown Rice Color, Phenolics, Flavonoid Contents, and Antioxidant Capacity in Rice Grain. Cereal Chemistry. 86: 609-615.

Johnson, H. W., H. F. Robinson, and R. E. Comstock. 1955. Estimates of Genetic and Environmental Variability in Soybeans1. Agronomy Journal. 47: 314-318.

Maisuthisakul, P., and L. Changchub. 2012. Total phenolic, anthocyanin content, antiradical activity, color and visible spectrum of nine genotypes from Thai rice grains and correlations. pp. 113-121. In Proceedings of 50th Kasetsart University Annual Conference 31 January-2 February 2012. Bangkok, Thailand.

Miller, P. A., J. C. Williams Jr., H. F. Robinson, and R. E. Comstock. 1958. Estimates of genotypic and environmental variances and covariances in upland cotton and their implications in selection. Agronomy Journal. 50: 126-31.

Park, S., M. J. Choi, J. Y. Lee, J. K. Kim, S. H. Ha, and S. H. Lim. 2016. Molecular and biochemical analysis of two rice flavonoid 3'-hydroxylase to evaluate their roles in flavonoid biosynthesis in rice grain. International Journal of Molecular Sciences. 17: 1549.

Phaiwan, P., and J. Sudarat. 2016 Chemometric classification of pigmented rice varieties based on antioxidative properties in relation to color. Songklanakarin Journal of Science and Technology. 38: 463-472.

Poehlman, J.H. and D. A. Sleper. 1995. Breeding Field Crops. 4th ed. Ames: Iowa State University Press.

Poosri, S., T. Thilavech, P. Pasukamonset, C. Suparpprom, and S. Adisakwattana. 2019. Studies on Riceberry rice (Oryza sativa L.) extract on the key steps related to carbohydrate and lipid digestion and absorption: A new source of natural bioactive substances. NFS Journal. 17: 17-23.

Rahman, M. M., K. E. Lee, E. S. Lee, M. N. Matin, D. S. Lee, J. S. Yun, J. B. Kim, and S. G. Kang. 2013. The genetic constitutions of complementary genes Pp and Pb determine the purple color variation in pericarps with cyanidin-3-O-glucoside depositions in black rice. Journal of Plant Biology. 56: 24-31.

Ravichanthiran, K., Z. F. Ma, H. Zhang, Y. Cao, C. W. Wang, S. Muhammad, E. K. Aglago, Y. Zhang, Y. Jin, and B. Pan. 2018. Phytochemical Profile of Brown Rice and Its Nutrigenomic Implications. Antioxidants (Basel). 7: 1-16.

Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 26: 1231-1237.

Reddy, V. S., S. Dash, and A. R. Reddy. 1995. Anthocyanin pathway in rice (Oryza sativa L): identification of a mutant showing dominant inhibition of anthocyanins in leaf and accumulation of proanthocyanidins in pericarp. Theoretical and Applied Genetics. 91: 301-312.

Roy, S. C., and P. Shil. 2020. Assessment of Genetic Heritability in Rice Breeding Lines Based on Morphological Traits and Caryopsis Ultrastructure. Scientific Reports. 10: 1-17.

Sakamoto, W., T. Ohmori, K. Kageyama, C. Miyazaki, A. Saito, M. Murata, K. Noda, and M. Maekawa. 2001. The Purple leaf (Pl) Locus of Rice: the Plw Allele has a Complex Organization and Includes Two Genes Encoding Basic Helix-Loop-Helix Proteins Involved in Anthocyanin Biosynthesis. Plant and Cell Physiology. 42: 982-991.

Sanghamitra, P., R. P. Sah, T. B. Bagchi, S. G. Sharma, A. Kumar, S. Munda, and R. K. Sahu. 2018. Evaluation of variability and environmental stability of grain quality and agronomic parameters of pigmented rice (O. sativa L.). Journal of Food Science and Technology. 55: 879-890.

Shen, Y., L. Jin, P. Xiao, Y. Lu, and J. Bao. 2009. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. Journal of Cereal Science. 49: 106-111.

Shih, C. H., H. Chu, L. K. Tang, W. Sakamoto, M. Maekawa, I. K. Chu, M. Wang, and C. Lo. 2008. Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta. 228: 1043-1054.

Thitipramote, N., P. Pradmeeteekul, J. Nimkamnerd, P. Chaiwut, P. Pintathong, and N. Thitilerdecha. 2016. Bioactive compounds and antioxidant activities of red (Brown Red Jasmine) and black (Kam Leum Pua) native pigmented rice. International Food Research Journal. 23: 410-414.

Tian, S., K. Nakamura, and H. Kayahara. 2004. Analysis of Phenolic Compounds in White Rice, Brown Rice, and Germinated Brown Rice. Journal of Agricultural and Food Chemistry. 52: 4808-4813.

Umnajkitikorn, K., B. Faiyue, and K. Saengnil. 2013. Enhancing Antioxidant Properties of Germinated Thai rice (Oryza sativa L.) cv. Kum Doi Saket with Salinity. Rice Research. 1: 1-8.

Wang, C., and Q. Shu. 2007. Fine mapping and candidate gene analysis of purple pericarp gene Pb in rice (Oryza sativa L.). Chinese Science Bulletin. 52: 3097-3104.

Yang, X., X. Li, X. Pu, J. Du, K. A. Muhammad, J. Yang, Y. Zeng, and T. Yang. 2020. QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population. Acta Agronomica Sinica. 46: 52-61.

Zhang, M. W., R. F. Zhang, F. X. Zhang, and R. H. Liu. 2010. Phenolic Profiles and Antioxidant Activity of Black Rice Bran of Different Commercially Available Varieties. Journal of Agricultural and Food Chemistry. 58: 7580-7587.

Zhang, Q., J. Zhang, J. Shen, A. Silva, D. A. Dennis, and C. J. Barrow. 2006. A Simple 96-Well Microplate Method for Estimation of Total Polyphenol Content in Seaweeds. Journal of Applied Phycology. 18: 445-450.