การทำนายค่าพันธุกรรมจีโนมของลักษณะการให้ผลผลิตน้ำนมสำหรับโคนมไทย โดยใช้วิธีการแบบขั้นตอนเดียวด้วยโมเดลวันทดสอบการถดถอยแบบสุ่ม

Main Article Content

สายัณห์ บัวบาน
สมศักดิ์ เปรมปรีดิ์
มนต์ชัย ดวงจินดา

บทคัดย่อ

การทำนายค่าพันธุกรรมจีโนมโดยใช้วิธีการแบบขั้นตอนเดียว (single-step genomic BLUP, ssGBLUP) ได้แสดงให้เห็นว่ามีประสิทธิภาพสูงกว่าวิธีการแบบหลายขั้นตอน และการวิเคราะห์ทางสถิติของลักษณะการให้ผลผลิตน้ำนมด้วยโมเดลวันทดสอบการถดถอยแบบสุ่ม (random regression test-day model, RR-TDM) มีข้อดีที่ชัดเจนกว่าโมเดลอื่น ๆ การวิจัยครั้งนี้จึงมีวัตถุประสงค์เพื่อประเมินความสามารถในการทำนายค่าพันธุกรรมของลักษณะการให้ผลผลิตน้ำนมโดยใช้วิธีการแบบขั้นตอนเดียวด้วยโมเดลวันทดสอบการถดถอยแบบสุ่ม (single-step random regression test-day model, SS-RR-TDM) เปรียบเทียบกับวิธีการแบบดั้งเดิมโดย RR-TDM ในประชากรโคนมไทย และศึกษาผลกระทบจากการใช้ข้อมูลจีโนไทป์ของแม่โคต่อการทำนายค่าพันธุกรรมจีโนมสำหรับพ่อโคที่อายุยังน้อย ชุดข้อมูลของลักษณะปริมาณน้ำนม (n = 170,666) และลักษณะองค์ประกอบน้ำนม (n = 160,526) ได้มาจากแม่โคนมในรอบการให้นมครั้งแรกที่คลอดลูกระหว่างเดือนพฤศจิกายน 2536 ถึงเดือนมีนาคม 2560 จำนวน 24,858 และ 23,201 ตัว ตามลำดับ ข้อมูลจีโนไทป์ที่ได้จาก Illumina Bovine SNP50 BeadChip สำหรับลักษณะปริมาณน้ำนมมีจำนวน 876 ตัว และลักษณะองค์ประกอบน้ำนมมีจำนวน 868 ตัว เราตัดข้อมูลในช่วงหกปีสุดท้าย และสัตว์ที่ใช้ตรวจสอบความแม่นยำกำหนดให้เป็นพ่อโคที่ไม่มีลูกสาวในชุดข้อมูลที่ถูกตัดทอน ค่า EBVs (estimated breeding values) ที่ใช้พันธุ์ประวัติแบบดั้งเดิมทำนายด้วย RR-TDM ส่วนค่าพันธุกรรมจีโนม (genomic estimated breeding values, GEBVs) ทำนายด้วย SS-RR-TDM เปรียบเทียบวิธีการทำนายโดยใช้ความสามารถในการทำนายค่าพันธุกรรมสำหรับพ่อโคที่มีอายุยังน้อย ได้แก่ ความแม่นยำเชิงทฤษฎี ความแม่นยำเชิงการตรวจสอบ และความไม่อคติ ความแม่นยำเชิงทฤษฎีได้จากการแปลงเมตริกซ์สัมประสิทธิ์ของสมการโมเดลแบบผสม (mixed model equations, MME) ในขณะที่ความแม่นยำเชิงการตรวจสอบได้จากสัมประสิทธิ์สหสัมพันธ์เพียร์สันระหว่าง dEBV (deregressed proofs) จากชุดข้อมูลทั้งหมด และ G(EBV) จากชุดข้อมูลที่ลดลง ความไม่อคติจะพิจารณาจากค่าสัมประสิทธิ์การถดถอยที่คำนวณตามโมเดลการถดถอยเชิงเส้น (มีค่าเข้าใกล้ 1) ผลการศึกษาแสดงให้เห็นว่าการทำนายค่าทางพันธุกรรมจีโนมโดยใช้จีโนไทป์พ่อโคเพียงอย่างเดียวด้วย SS-RR-TDM ให้ค่าความแม่นยำเชิงทฤษฎี และความแม่นยำเชิงการตรวจสอบเพิ่มขึ้นโดยเฉลี่ย 0.22 และ 0.06 จุด ตามลำดับเมื่อเปรียบเทียบกับ RR-TDM สำหรับทุกลักษณะการให้ผลผลิตน้ำนม ขณะที่เมื่อนำข้อมูลจีโนไทป์ของแม่โคมาร่วมใช้ในการทำนายให้ความแม่นยำเชิงทฤษฎี และความแม่นยำเชิงการตรวจสอบเพิ่มขึ้นอีกโดยเฉลี่ย 0.02 และ 0.07 จุดตามลำดับ ค่าสัมประสิทธิ์การถดถอยที่ได้จาก SS-RR-TDM มีค่าเข้าใกล้ 1 มากกว่า RR-TDM และการทำนาย GEBV ที่เกินจริงมีแนวโน้มลดลงเมื่อมีการใช้ข้อมูลจีโนไทป์ของแม่โคร่วมในการทำนาย การวิจัยครั้งนี้ช่วยยืนยันความเป็นไปได้ในการใช้ SS-RRTDM ในการทำนายพันธุกรรมจีโนมสำหรับลักษณะการให้ผลผลิตน้ำนมของโคนมไทยในอนาคต และควรใช้ข้อมูลจีโนไทป์ของทั้งพ่อและแม่โคในการทำนายค่าพันธุกรรมจีโนมในประชากรโคนมไทย

Article Details

บท
บทความวิจัย (research article)

References

กรมปศุสัตว์. 2556. สมุดพ่อพันธุ์กรมปศุสัตว์ 2556. สำนักเทคโนโลยีชีวภาพการผลิตปศุสัตว์ กรมปศุสัตว์ พิมพ์ที่ชุมนุมสหกรณ์การเกษตรแห่งประเทศไทย 69 หน้า. แหล่งข้อมูล:http://biotech.dld.go.th/webnew/Data/Sire_Summary/2556/Sire_Summary2556.pdf. ค้นเมื่อ 15 ธันวาคม 2020.

กรมปศุสัตว์. 2562. สมุดพ่อพันธุ์กรมปศุสัตว์ 2562. สำนักเทคโนโลยีชีวภาพการผลิตปศุสัตว์ กรมปศุสัตว์ พิมพ์ที่ชุมนุมสหกรณ์การเกษตรแห่งประเทศไทย 69 หน้า. แหล่งข้อมูล:http://biotech.dld.go.th/webnew/Data/Sire_Summary/2562/Sire_Summary2562.pdf. ค้นเมื่อ 15 ธันวาคม 2020.

Abdullahpour, R., M. M. Shahrbabak, A. Nejati-Javaremi, R. V. Torshizi, and R. Mrode. 2013. Genetic analysis of milk yield, fat and protein content in Holstein dairy cows in Iran: Legendre polynomials random regression model applied. Archiv fur Tierzucht. 56: 497–508.

Baba, T., Y. Gotoh, S. Yamaguchi, S. Nakagawa, H. Abe, Y. Masuda, and T. Kawahara. 2017. Application of single-step genomic best linear unbiased prediction with a multiple-lactation random regression test-day model for Japanese Holsteins. Animal Science Journal. 88: 1226–1231.

Bauer, J., J. Pribyl, and L. Vostrý. 2015. Short communication: Reliability of single-step genomic BLUP breeding values by multi-trait test-day model analysis. Journal of Dairy Science. 98: 4999–5003.

Ben Zaabza, H., A. Ben Gara, and B. Rekik. 2018. Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials. Asian-Australasian Journal of Animal Sciences. 31: 636–642.

Boichard, D., V. Ducrocq, and S. Fritz. 2015. Sustainable dairy cattle selection in the genomic era. Invited review. Journal of Animal Breeding and Genetics. 132: 135–143.

Buaban, S. and J. Sanpote. 2010. Comparison of breeding values predicted with lactation model and test-day model in crossbred dairy cattle. Journal of Biotecnology Livestock Production. 5: 33–59.

Buaban, S., S. Puangdee, M. Duangjinda, and W. Boonkum. 2020. Estimation of genetic parameters and trends for production traits of dairy cattle in Thailand using a multiple-trait multiple-lactation test day model. Asian-Australas Journal of Animal Science. 33: 1387–1399.

Christensen, O. F., P. Madsen, B. Nielsen, T. Ostersen, and G. Su. 2012. Single-step methods for genomic evaluation in pigs. Animal. 6: 1565–1571.

Cooper, T. A., G. R. Wiggans, and P. M. VanRaden. 2015. Short communication: Analysis of genomic predictor population for Holstein dairy cattle in the United States-Effects of sex and age. Journal of Dairy Science. 98: 2785–2788.

Ding, X., Z. Zhang, X. Li, S. Wang, X. Wu, and D. Sun. 2013. Accuracy of genomic prediction for milk production traits in the Chinese Holstein Population using reference population consisting of cows. Journal of Dairy Science. 96: 5315–5323.

Doublet, A.-C., P. Croiseau, S. Fritz, A. Michenet, C. Hozé, C. Danchin-Burge, D. Laloë, and G. Restoux. 2019. The impact of genomic selection on genetic diversity and genetic gain in three french dairy cattle breeds. Genetics Selection Evolution. 51: 52.

Gao, H., P. Madsen, U. Nielsen, G. Aamand, G. Su, K. Byskov, and J. Jensen. 2015. Including different groups of genotyped females for genomic prediction in a Nordic Jersey population. Journal of Dairy Science. 98: 9051–9059.

Garcia, A. L. S., B. Bosworth, G. Waldbieser, I. Misztal, S. Tsuruta, and D. A. L. Lourenco. 2018. Development of genomic predictions for harvest and carcass weight in channel catfish. Genetics Selection Evolution. 50: 66.

Gebreyohannes, G., S. Koonawootrittriron, M. A. Elzo, T. Suwanasopee. 2016. Estimation of genetic parameters using a random regression monthly test-day model in an Ethiopian dairy cattle population. Agriculture and Natural Resources. 50: 64–70.

Gengler, N., A. Tijani, G. R. Wiggans, and I. Misztal. 1999. Estimation of (co)variances function coefficient for test-day yield with expectation-maximization restricted maximum likelihood algorithm. Journal of Dairy Science. 82: 1849.e1–1849.e23.

Hayes, B. J., P. J. Bowman, A. Chamberlain, and M. Goddard. 2009. Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science. 92: 433–443.

Henderson, C.R. 1984. Applications of linear models in animal breeding, University of Guelph.

Jakobsen, J. H., P. Madsen, J. Jensen, J. Pedersen, L. Christensen, and D. Sorensen. 2002. Genetic parameters for milk production and persistency for danish Holsteins estimated in random regression models using REML. Journal of Dairy Science. 85: 1607–1616.

Jamrozik, J., L. Schaeffer, and J. Dekkers. 1997. Genetic evaluation of dairy cattle using test day yields and random regression model. Journal of Dairy Science. 80: 1217–1226.

Jattawa, D., M. A. Elzo, S. Koonawootrittriron, and T. Suwanasopee. 2016. Genomic-polygenic and polygenic evaluations for milk yield and fat percentage using random regression models with Legendre polynomials in a Thai multibreed dairy population. Livestock Science. 188: 133–141.

Kang, H., L. Zhou, R. Mrode, Q. Zhang, and J. F. Liu. 2017. Incorporating the single-step strategy into a random regression model to enhance genomic prediction of longitudinal traits. Heredity. 119: 459–467.

Kistemaker, G. J. 1997. The comparison of random regression test day models and a 305-day for evaluation of milk yield in dairy cattle. PhD Thesis. University of Guelph, Guelph, ON, Canada.

Koivula, M., I. Strandén, G. P. Aamand, and E. A. Mäntysaari. 2014. Effect of cow reference group on validation accuracy of genomic evaluation. p.1-3. In: Proceedings of 10th world congress of genetics applied to livestock production. August 17-22, 2014, Vancouver, Canada.

Koivula, M., I. Strandén, J. Pösö, G. Aamand, and E. Mäntysaari. 2015. Single-step genomic evaluation using multitrait random regression model and test-day data. Journal of Dairy Science. 98: 2775–2784.

Legarra, A., and A. Reverter. 2018. Semi-parametric estimates of population accuracy and bias of predictions of breeding values and future phenotypes using the LR method. Genetics Selection Evolution. 50: 53.

Legarra, A., and V. Ducrocq. 2012. Computational strategies for national integration of phenotypic, genomic, and pedigree data in a single-step best linear unbiased prediction. Journal of Animal Science. 95: 4629–4645.

Legarra, A., I. Aguilar, and I. Misztal. 2009. A relationship matrix including full pedigree and genomic information. Journal of Dairy Science. 92: 4656–4663.

Liu, R., Y. Sun, G. Zhao, F. Wang, D. Wu, M. Zheng, J. Chen, L. Zhang, Y. Hu, and J. Wen. 2013. Genome-wide association study identifies loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS ONE. 8: e61172.

Luan, T., J. A. Woolliams, S., M. Kent, M. Svendsen, and T. H. Meuwissen. 2009. The accuracy of Genomic Selection in Norwegian red cattle assessed by cross-validation. Genetics. 183: 1119–1126.

Machado, S. G., M. A. R. Freitas, and C. H. Gadini. 1999. Genetic parameters of test day milk yields of Holstein cows. Genetics and Molecular Biology. 22: 383–386.

Mäntysaari, E., Z. Liu, and P. VanRaden. 2010. Interbull validation test for genomic evaluations. p.17-22. In: Proceedings of Interbull bulletin. March 4-5, 2010, Paris, France.

Misztal, I. and G. R. Wiggans. 1988. Approximation of Prediction Error Variance in Large-Scale Animal Models. Journal of Dairy Science. 71: 27–32.

Misztal, I., A. Legarra, and I. Aguilar. 2009. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. Journal of Dairy Science. 92: 4648–4655.

Misztal, I., D. Lourenco, and A. Legarra. 2020. Current status of genomic evaluation. Journal of Animal Science. 98: skaa101.

Misztal, I., H. L. Bradford, D.A.L. Lourenco, S. Tsuruta, Y. Masuda, A. Legarra, and T.J. Lawlor. 2017. Studies on inflation of GEBV in single-step GBLUP for type. Interbull bulletin. 51: 38–42.

Misztal, I., S. Tsuruta, D. Lourenco, Y. Masuda, I. Aguilar, A. Legarra, and Z. Vitezica. 2018. Manual for blupf90 family of programs. University of Georgia. Available: http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf. Accessed February 1, 2021.

Mrode, R. A. 2014. Linear models for the prediction of animal breeding values, 3rd edition. Wallingford, United Kingdom. CAB International.

Oliveira, H. R., L. F. Brito, D. A. L. Lourenco, F. F. Silva, J. Jamrozik, L. R. Schaeffer, and F. S. Schenkel. 2019a. Invited review: Advances and applications of random regression models: From quantitative genetics to genomics. Journal of Dairy Science. 102: 7664–7683.

Oliveira, H. R., L. F. Brito, F. F. Silva, D. A. L. Lourenco, J. Jamrozik, and F. S. Schenkel. 2019b. Genomic prediction of lactation curves for milk, fat, protein, and somatic cell score in Holstein cattle. Journal of Dairy Science. 102: 452–463.

Seegers, H., C. Fourichon, and F. Beaudeau. 2003. Production effects related to mastitis and mastitis economics in dairy cattle herds. Veterinary Research. 34: 475–491.

Silva, M. V. B., D. J. A. dos Santos, S. A. Boison, A. T. H. Utsunomiya, A. S. Carmo, T. S. Sonstegard, J. B. Cole, and C. P. Van Tassell. 2014. The development of genomics applied to dairy breeding. Livestock Science. 166: 66–75.

Snelling, W. M., R. A. Cushman, J. W. Keele, C. Maltecca, M. G. Thomas, and M. R. S Fortes, A. Reverter. 2013. Breeding and genetics symposium: networks and pathways to guide genomic selection. Journal of Animal Science. 91: 537–552.

Su, G. M. P., U. S. Nielsen, G. P. Aamand, G. Wiggans, and B. Guldbrandtsen. 2016. Sharing referenced data and including cows in the reference population improve genomic predictions in Danish Jersey. Animal. 10: 1067–1075.

Tsuruta, S., I. Misztal, and T. J. Lawlor. 2013. Short communication: Genomic evaluations of final score for US Holsteins benefit from the inclusion of genotypes on cows. Journal of Dairy Science. 96: 3332–3335.

Uemoto, Y., T. Osawa, and J. Saburi. 2017. Effect of genotyped cows in the reference population on the genomic evaluation of Holstein cattle. Animal. 11(3): 382–393.

VanRaden, P. 2020. Symposium review: How to implement genomic selection. Journal of Dairy Science. 103: 5291–5301.

VanRaden, P. M. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science. 91: 4414–4423.

VanRaden, P. M., C. P. Van Tassel, G. R. Wiggans, T. S. Sonstegard, R. D. Schnabel, J. F. Taylor, and F.S. Schenkel. 2009. Invited review: Reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science. 92: 16–24.

Weller, J. I. 2016. Genomic Selection in Animals. John Wiley & Sons Inc., Hoboken, NJ.