ผลของอาหารสัตว์ฟังก์ชั่นจากพรีไบโอติกส์และซินไบโอติกส์ที่เสริมด้วยเศษหน่อไม้ฝรั่งตัดแต่งเหลือทิ้งต่อประสิทธิภาพการย่อยได้ของโภชนะ กรดไขมันที่ระเหยง่าย จุลินทรีย์ในไส้ตัน และมิญชวิทยาของลำไส้เล็กของไก่ไข่

Main Article Content

มนัสนันท์ นพรัตน์ไมตรี
วีรชัย ชุมแสงโชติสกุล
มาริษา นาวา
อณัญญา ปานทอง
วรางคณา กิจพิพิธ

บทคัดย่อ

การทดลองครั้งนี้ดำเนินการเพื่อศึกษาผลของอาหารสัตว์ฟังก์ชั่นจากพรีไบโอติกส์และซินไบโอติกส์ที่เสริมด้วย   เศษหน่อไม้ฝรั่งตัดแต่งเหลือทิ้งในอาหารไก่ไข่ (Trimmed asparagus by-products: TABP) ต่อประสิทธิภาพการย่อยได้ของโภชนะ กรดไขมันที่ระเหยง่ายรวม จุลินทรีย์ในไส้ตัน และ มิญชวิทยาของลำไส้เล็ก โดยไก่ไข่สายพันธุ์ Hisex brown®    อายุ 35 สัปดาห์ จำนวน 560 ตัว ถูกสุ่มเข้าสู่การจัดกลุ่มการทดลองแบบ 2X3 แฟคตอเรียลร่วมกับทรีทเมนต์ควบคุม {(2X3)+1} ภายใต้แผนการทดลองแบบสุ่มสมบูรณ์ (Completely randomized design) ที่ประกอบด้วย 2 ปัจจัย และ 1 ทรีทเมนต์ควบคุม ได้แก่ ปัจจัย A คือ การเสริมโปรไบโอติกส์ (0 and 2 กรัมต่อกิโลกรัม) ปัจจัย B คือ ระดับการเสริมของ TABP (1, 3 และ 5%) โดยแต่ละทรีทเมนต์มี 4 ซ้ำ (n = 20) ผลการทดลอง พบว่า มีอิทธิพลร่วมระหว่าง ปัจจัย A และ B ต่อจำนวนจุลินทรีย์ในไส้ตัน (P<0.01) อีกทั้ง พบว่า การย่อยได้ของไขมันสูงขึ้นและมีการเพิ่มความกว้างของวิลลัสและพื้นที่ผิวของวิลลัสของลำไส้เล็ก   ส่วนดูโอดีนัม (P<0.01) ในไก่ไข่ที่ได้รับโปรไบโอติกส์ 2 กรัมต่อกิโลกรัมสูงกว่ากลุ่มไก่ไข่ที่ได้รับโปรไบโอติกส์ 0 กรัมต่อกิโลกรัม นอกจากนี้ระดับการเสริม TABP ช่วยเพิ่มการย่อยได้ของอินทรียวัตถุ (Linear, P<0.01) กรดไขมันที่ระเหยง่ายรวม (Linear, P<0.01) ความกว้างของวิลลัสและพื้นที่ผิวของวิลลัสของลำไส้เล็กส่วนดูโอดีนัม (Quadratic, P<0.01) โดยรวมแล้วการเสริมพรีไบโอติกส์และซินไบโอติกส์ในอาหารส่งผลให้ความสามารถในการย่อยได้ของโภชนะ จุลินทรีย์ในไส้ตัน กรดไขมันที่ระเหยง่ายรวม และมิญชวิทยาของลำไส้เล็กที่ดีขึ้นอย่างมีนัยสำคัญเมื่อเปรียบเทียบกับกลุ่มควบคุม (P<0.05) ข้อสรุปของการศึกษานี้ชี้ให้เห็นว่าการเสริมซินไบโอติกส์จาก TABP ที่ระดับ 1% ร่วมกับโปรไบโอติกส์ในอาหารไก่ไข่มีความสามารถในการพัฒนาการย่อยได้และมิญชวิทยาของลำไส้เล็กของไก่ไข่

Downloads

Download data is not yet available.

Article Details

บท
บทความวิจัย (research article)

References

พรพรรณ แสนภูมิ และ สุภาวดี ฉิมทอง. 2557. การปรับปรุงกากชาด้วยเอนไซม์เพื่อใช้เป็นพรีไบโอติกส์. แก่นเกษตร. 42: 368-374.

Abdelqader, A., A.R. Al-Fataftah, and G. Daş. 2013. Effects of dietary Bacillus subtilis and inulin supplementation on performance, eggshell quality, intestinal morphology and microflora composition of laying hens in the late phase of production. Animal Feed Science and Technology. 179: 103–111.

Abdel-Wareth, A.A.A., S. Hammad, R. Khalaphallah, W.M. Salem, and J. Lohakare. 2019. Synbiotic as eco-friendly feed additive in diets of chickens under hot climatic conditions. Poultry Science. 98: 1–9.

Adhikari, P., and W.K. Kim. 2017. Overview of Prebiotics and Probiotics: Focus on Performance, Gut Health and Immunity – A Review. Annals of Animal Science. 17: 949-966.

Ahmed, M.M.N., Z.S.H. Ismail, and A.A.A. Abdel-Waret. 2018. Application of prebiotics as feed additives in poultry nutrition-a review. Egyptian Poultry Science Journal. 38: 207-222.

Ahmed, S.T., Md.M. Islam, H.S. Mun, H.J. Sim, Y.J. Kim, and C.J. Yang. 2014. Effects of Bacillus amyloliquefaciens as a probiotic strain on growth performance, cecal microflora, and fecal noxious gas emissions of broiler chickens. Poultry Science. 93: 1963-1971.

Alloui, M.N., W. Szczurek, and S. Sienkiewicz. 2013. The usefulness of prebiotics and probiotics in modern poultry nutrition: a review. Annals of Animal Science. 13: 17–32

Amad, A.A., K. Männer, K.R. Wendler, K. Neumann, and J. Zentek. 2011. Effects of a phytogenic feed additive on growth performance and ileal nutrient digestibility in broiler chickens. Poultry Science. 90: 2811–2816.

AOAC. 1995. Official method of analysis. 19th Edition. Association of Official Analytical Chemist, Washington, D.C.

Awad W.A., K. Ghareeb, S. Abdel-Raheem, and J. Böhm. 2009. Effects of dietary inclusion of probiotic and symbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chicken. Poultry Science. 88: 49-56.

Ball A.S., and A.M. Jackson. 1995. The recovery of lignocellulose-degrading enzymes from spent mushroom compost. Bioresource Technology. 54: 311-314.

Boguslawska-Tryk, M., A. Piotrowska, and K. Burlikowska. 2012. Dietary fructans and their potential beneficial influence on health and performance parameters in broiler chickens. Journal of Central European Agriculture. 13: 272–291.

Buclaw, M. 2016. The use of inulin in poultry feeding: a review. Journal of Animal Physiology and Animal Nutrition. 100: 1015–1022.

Cengiz, Ö., B.H. Köksal, O. Tatlı, Ö. Sevim, and U. Ahsan. 2015. Effect of dietary probiotic and high stocking density on the performance, carcass yield, gut microflora, and stress indicators of broilers. Poultry Science. 94: 2395–2403.

Charalampopolus, D., and R.A. Rastall. 2005. Prebiotics and probiotics science and technology. Springer Verlag, New York.

Choi, J.Y., P.L. Shinde, I.K., Kwon, Y.H. Song, and B.J. Chae. 2009. Effect of wood vinegar on the performance, nutrient digestibility and intestinal microflora in weanling pigs. Asian-Australasian Journal of Animal Sciences. 22: 267-274.

De Maesschalck, C., V. Eeckhaut, L. Maertens, L. De Lange, L. Marchal, C. Nezer, S. De Baere, S. Croubels, G. Daube, J. Dewulf, F.Haesebrouck, R. Ducatelle, B. Taminau, and F. Van Immerseel. 2015. Effects of xylo-oligosaccharides on broiler chicken performance and microbiota. Applied and Environmental Microbiology. 81: 5880–5888.

Dibaji, S.M., A. Seidavi, L. Asadpour, and F.M. Silva. 2014. Effect of a synbiotic on the intestinal microflora of chickens. Journal of Applied Poultry Research. 23:1-6.

Eeckhaut, V., F. Van Immerseel, S. Croubels, S. De Baere, F. Haesebrouck, R. Ducatelle, P Louis, and P. Vandamme. 2011. Butyrate production in phylogenetically diverse Firmicutes isolated from the chicken caecum. Microbial Biotechnology. 4: 503-512.

Emami K.N, A. Samie, H.R. Rahmani, and C.A. Ruiz-Feria. 2012. The effect of peppermint essential oil and fructooligosaccharides, as alternatives to virginiamycin, on growth performance, digestibility, gut morphology and immune response of male broilers. Animal Feed Science and Technology. 175: 57-64.

Everard, A., C. Belzer, L. Geurts, J.P. Ouwerkerk, C. Druart, L.B. Bindels, Y. Guiot, M. Derrien, G.G. Muccioli, N.M. Delzenne, W. M. de Vos, and P.D. Cani. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls dietinduced obesity. Proceedings of the National Academy of Sciences of the United States of America. 110: 9066–9071.

Fenton, T.W., and M. Fenton. 1979. An improved method for chromic oxide determination in feed and feces. Canadian Journal of Animal Science. 59: 631-634.

Ferket, P.R., C.W. Parks, and J.L. Grimes. 2002. Benefits of dietary antibiotic and mannanoligosaccharide supplementation for poultry. Available:https://www.academia.edu/10554240/BENEFITS_OF_DIETARY_ANTIBIOTIC_AND_MANNANOLIGOSACCHARIDE_SUPPLEMENTATION_FOR_POULTRY. Accessed Jan. 15, 2015.

Gaggìa, F., P. Mattarelli, and B. Biavati. 2010. Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology. 141: 15-28.

Gava, M.S., L.B. Moraes, D. Carvalho, G.Z. Chitolina, L.C.B. Fallavena, H.L.S. Moraes, J. Herpich, and C.T.P. Salle. 2015. Determining the best sectioning method and intestinal segment for morphometric analysis in broilers. Brazilian Journal of Poultry Science. 17: 145-149.

Giannenas I., D. Tontis, E. Tsalie, E.F. Chronis, D. Doukas, and I. Kyriazakis. 2010. Influence of dietary mushroom Agaricus bisporus on intestinal morphology, microbiota in broiler chicken. Animal Feed Science and Technology. 89: 78-84.

Giannenas, I., E. Tsalie, E.F. Chronis, S. Mavridis, D. Tontis, and I. Kyriazakis. 2011. Consumption of Agaricus bisporus mushroom affects the performance, intestinal microbiota composition and morphology, and antoxidant status of turkey poults. Animal Feed Science and Technology. 165: 218-229.

Hoffman-Pennesi, D. and C. Wu. 2010. The effect of thymol and thyme oil feed supplementation on growth performance, serum antioxidant levels, and cecal Salmonella population in broilers. Journal of Applied Poultry Research. 19: 432–443.

Hornung, C., A. Poehlein, F.S. Haack, M. Schmidt, K. Dierking, A. Pohlen, H. Schulenburg, M. Blokesch, L. Plener, K. Jung, A. Bonge, I. Krohn-Molt, C. Utpatel, G. Timmermann, E. Spieck, A. Pommerening-Roser, E. Bode, H.B. Bode, R. Daniel, C. Schmeisser, and W.R. Streit. 2013. The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLOS One. 8: e55045.

Huang R.L., Y.L. Yin, G.Y. Wu, Y.G. Zhang, T.J. Li, L.L. Li, M.X. Li, Z.R. Tang, J. Zhang, B. Wang, J.H. He, and X.Z. Nie. 2005. Effect of dietary oligochitosan supplementation on illeal digestibility of nutrients and performance in broilers. Poultry Science. 84: 1383–1388.

Huang, Q., Y. Wei, Y. Lv, Y. Wang, and T. Hu. 2015. Effect of dietary inulin supplements on growth performance and intestinal immunological parameters of broiler chickens. Livestock Science. 180: 172-176.

Jeong, J.S., and I.H. Kim. 2014. Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poultry Science. 93: 3097-3103.

Jin L.Z., Y.W. Ho, N. Abdullah, and S. Jalaludin. 1996. Influence of dried Bacillus subtilis and lactobacilli cultures on intestinal microflora and performance in broilers. Asian-Australasian Journal of Animal Sciences. 9: 397–403.

Józefiak D., S. Kaczmarek, and A. Rutkowski. 2008. A note on the effects of selected prebiotics on the performance and ileal microbiota of broiler chickens. Journal of Animal and Feed Sciences. 17: 392–397.

Józefiak, D., A. Rutkowski, and S.A. Martin 2004. Carbohydrate fermentation in the avian ceca: a review. Animal Feed Science and Technology. 113: 1–15.

Khalifa, E., M. Abdel-Rahman, and K. Ghareeb. 2019. Effect of probiotic on growth performance, carcass traits, and clinical health parameters of broilers reared under heat stress in upper. Egypt. International Journal of Veterinary Science. 2: 27-44.

Khattak, F., V. Paschalis, M. Green, J.G.M. Houdijk, P. Soultanas, and J. Mahdavi. 2018. TYPLEX® Chelate, a novel feed additive, inhibits Campylobacter jejuni biofilm formation and cecal colonization in broiler chickens. Poultry Science. 97: 1391-1399.

Ko, H.G., S.H. Park, S.H. Kim, H.G. Park and W.M. Park. 2005. Detection and recovery of hydrolytic enzymes from spent compost of four mushroom species. Folia Microbiologica. 50: 103–106.

Kridtayopas, C., C. Rakangtong, C. Bunchasak, and W. Loongyai. 2019. Effect of prebiotic and synbiotic supplementation in diet on growth performance, small intestinal morphology, stress, and bacterial population under high stocking density condition of broiler chickens. Poultry Science. 98: 4595-4605.

Liu, X., S.B. Yoon, and I.H. Kim. 2020. Growth performance, nutrient digestibility, blood profiles, excreta microbial counts, meat quality and organ weight on broilers fed with de-oiled lecithin emulsifier. Animals. 10: 478.

Mac Farlane, S., and G.T. Mac Farlane. 2003. Regulation of short chain fatty acid production. Proceedings of the Nutrition Society. 62: 67-72.

Mac Farlane, G.T., H. Steed, and S. Mac Farlane. 2008. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. Journal of Applied Microbiology. 104: 305–344.

Makivic, L., M. Glisic, M. Boskovic, J. Djordjevic, R. Markovic, M. Baltic, and D. Sefer. 2019. Performances, ileal and cecal microbial populations and histological characteristics in broilers fed diets supplemented with lignocellulose. Kafkas Universitesi Veteriner Fakultesi Dergisi. 25: 83-91.

Markowiak, P., and K. Slizewska. 2018. Theroleofprobiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens. 10: 21.

Meng, Q.W., L. Yan, X. Ao, J.D. Jang, J.H. Cho, and I.H. Kim. 2010. Effects of chitooligosaccharide supplementation on egg production, nutrient digestibility, egg quality and blood profiles in laying hens. Asian-Australasian Journal of Animal Sciences. 23: 1476–1481.

Mookiah, S., C.C. Sieo, R. Kalavathy, N. Abdullah, and Y.W. Ho. 2014. Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. Journal of the Science of Food and Agriculture. 94: 341–348.

Mountzouris, K.C., P. Tsirsikos, I. Palamidi, A. Arvanniti, M. Mohnl, G. Schatmayr, and K. Fegeros. 2010. Effect of probiotic inclusion level in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulin, and cecal microflora composition. Poultry Science. 89: 588-593.

Nabizadeh, A. 2012. The effect of inulin on broiler chicken intestinal microflora, gut morphology, and performance. Journal of Animal and Feed Sciences. 21: 725–34.

National Research Council. 1994. Nutrient requirement of poultry. 9th Edition. National Academy Press, Washington, D.C.

Ndelekwute, E.K., E.D. Assam, and E.M. Assam. 2018. Apparent nutrient digestibility, gut pH and digesta viscosity of broiler chickens fed acidified water. MOJ Anatomy & Physiology. 5: 250-253.

Nopparatmaitree, M., A. Panthong, S. Paengkoum, and P. Saenphoom. 2014. Evaluation of asparagus trimmed waste in laying hens diet on nutrient digestibility and productive performance. Silpakorn University Science and Technology Journal. 8: 72-84.

Okechukwu, R.I., J.N. Okereke, N.E. Onyedineke, and R.K. Obi. 2011. Microbial and nutritional qualities of mushroom. Asian journal of experimental biological sciences. 2: 746-749.

Pandey, K.R., S.R. Naik, and B.V. Vakil. 2015. Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology. 52: 7577–7587.

Park, J.W., J.S. Jeong, S.I. Lee, and I.H. Kim. 2016. Effect of dietary supplementation with a probiotic (Enterococcus faecium) on production performance, excreta microflora, ammonia emission, and nutrient utilization in ISA brown laying hens. Poultry Science. 95: 2829–2835.

Pourakbari, M., A. Seidavi, l. Asadpour, and A. Martínez. 2016. Probiotic level effects on growth performance, carcass traits, blood parameters, cecal microbiota, and immune response of broilers. Annals of the Brazilian Academy of Sciences. 88: 1011-1021.

R Core Team. R. A Language and Environment for Statistical Computing. 2018. R Foundation for Statistical Computing, Vienna, Austria.

Raksasiri, B.V., P. Paengkoum, S. Paengkoum, and K. Poonsuk. 2018. The effect of supplementation of synbiotic in broiler diets on production performance, intestinal histomorphology and carcass quality. International Journal of Agricultural Technology. 14: 1743-1754.

Sakamoto, K., H. Hirose, A. Onizuka, M. Hayashi, N.F., Kawamura, and Y. T. Ezaki. 2000. Quantitative study of change in intestinal morphology and mucous jel on total parenteral nutrition in rats. Journal of Surgical Research. 94: 99-106.

Schrezenmeir, J., and M. de Vrese. 2001.Probiotics, prebiotics, and synbiotics – Approaching a definition. The American Journal of Clinical Nutrition. 73: 361–364.

Shang, H.M., H. Song, S.J. Shen, X. Yao, B. Wu, L.N. Wang, Y.Y. Jiang, and G.D. Ding. 2015. Effects of dietary polysaccharides from the submerged fermentation concentrate of Hericium caput-medusae (Bull.Fr.) Pers. on fat deposition in broilers. Livestock Science. 95: 267-274.

Shang, Y., S. Kumar, H. Thippareddi, and W.K. Kim. 2018. Effect of dietary fructooligosaccharide (FOS) supplementation on ileal microbiota in broiler chickens. Poultry Science. 97: 3622–3634.

Slavin, J. 2013. Fiber and prebiotics: mechanisms and health benefits. Nutrition. 5: 417-1435.

Steel, R.G.D. and J.H. Torrie. 1992. Principles and procedure statistic. 2nd Edition. McGrew-Hill Book Co Inc., Singapore.

Sugiharto, S. 2016. Role of nutraceuticals in gut health and growth performance of poultry. Journal of the Saudi Society of Agricultural Sciences. 15: 99-111.

Synytsya, A., K. Míčková, A. Synytsy, I. Jablonský, J. Spěváček, E.V. Erban, V. Kováříkov, J. Čopíková, and J. Glucans. 2009. Glucansfrom cultivate mushrooms Pleurotus ostreatus and Pleurotus eryngii: structure and potential prebiotic activity. Carbohydrate Polymers. 76: 548–556.

Tang, S.G.H., C.C. Sieo, K. Ramasamy, W.Z. Saad, H.K. Wong, and Y.W. Ho. 2017. Performance, biochemical and haematological responses, and relative organ weights of laying hens fed diets supplemented with prebiotic, probiotic and symbiotic. Veterinary Research. 13: 248

Tao, A.Y. and H.M. Tan. 2007. Evaluation of the performance and intestinal gut microflora of broilers fed on corn-soy diets supplemented with Bacillus subtilis PB6 (CloSTAT). Journal of Applied Poultry Research. 16: 296-303.

Thitaram, S.N., C.H. Chung, D.F. Day, A. Hinton, J.S. Bailey, and G.R. Siragusa. 2005. Isomalto-oligosaccharide increases cecal Bifidobacterium population in young broiler chickens. Poultry Science. 84 :998–1003.

Topping, D.L. and P.M. Clifton. 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological Reviews. 81: 1031-1064.

Tsirtsikos, P., K. Fegeros, C. Balaskas, A. Kominakis, and K.C. Mountzouris. 2012. Dietary probiotic inclusion level modulates intestinal mucin composition and mucosal morphology on broilers. Poultry Science. 91: 1860-1868.

Van der Wielen, P.W., S. Biesterveld, S. Notermans, H. Hofstra, B.A. Urlings, and F. van Knapen. 2000. Role of volatile fatty acids in development of the cecal microbiota in broiler chickens during growth. Applied and Environmental Microbiology. 66: 2536–2540.

Vermeulen, K., J. Verspreet, C.M. Courtin, F. Haesebrouck, R. Ducatelle, and F. Van Immerseel. 2017. Reduced particle size wheat bran is butyrogenic and lowers Salmonella colonization, when added to poultry feed. Veterinary Microbiology. 198: 64-71.

Viera-Alcaide, I., A. Hamdi, R. Rodríguez-Arcos, R. Guillén-Bejarano, and A. Jiménez-Araujo. 2020. Asparagus cultivation co-products: from waste to chance. Journal of Food Science and Nutrition. 6: 057

Wang, Z.R., S.Y. Qiao, W.Q. Lu, and D.F. Li. 2005. Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-based diets. Poultry Science. 84: 875–881.

Xu, Z.R., X.T. Zou, C.H. Hu, M.S. Xia, X.A. Zhan, and M.Q. Wang. 2003. Effects of dietary fructo-oligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Journal of Poultry Science. 82: 1030-1036.

Yang, G., Q. Yin, H.Y. Liu, and G.H. Liu. 2016. Effects of dietary oligosaccharide supplementation on growth performance, concentrations of the major odor-causing compounds in excreta, and the cecal microflora of broilers. Poultry Science. 95: 2342-2351.

Yang, Y., P.A. Iji, and M. Choct. 2009. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. Worlds. Poultry Science Journal. 65: 97-114.

Zhao, Y., J. Li , W. Hao, H. Zhu, N. Liang, Z. He, K.Y. Ma, and Z.Y. Chen. 2017. Structure-specific effects of short-chain fatty acids on plasma cholesterol concentration in male Syrian hamsters. Journal of Agricultural and Food Chemistry. 65: 10984-10992.

Most read articles by the same author(s)