Factors Affecting the Discrimination of Weed from Chinese Kale Seed by Image Processing Technique
Main Article Content
Abstract
An image processing technique was adapted in an attempt to discrimination of weed from Brassica alboglaba (Chinese kale) seeds, since manual inspection for recognizing weed from vegetable seed usually consumed long time and prone to error. As well, an image processing technique could detect object rapidly, and it is non-destructive technique. Therefore, factors affecting the discrimination of weed from Chinese Kale via image processing technique were assessed in this study. Brassica alboglaba and 2 kind of weed seeds (Slender amaranth: Amaranthus viridis and Pigweed Purslane: Portulaca oleracea) were photographed (100 images per species, 4 cm. above sample holder, 200x200 pixel resolution). Width, length, and area also intensity values of RGB color of weed seeds were examined via a developed Python-based image processing program. The results showed that the average width, length and area for B. alboglaba were significantly larger than for A. viridis and P. oleracea seeds. The intensity values of color of B. alboglaba seed was also significantly different from that for A. viridis and P. oleracea, while the color values of A. viridis and P. oleracea seeds were not significantly different. This study demonstrated that width, length, area and RGB color enable discrimination of weed from Chinese kale seeds.
Article Details
References
จักรกฤษ แสงแก้ว. 2549. การเขียนโปรแกรมภาษาไพธอนด้วยตัวเอง. สำนักพิมพ์ ส.ส.ท.
โชติพันธุ์ หล่อเลิศสุนทร. 2554. คู่มือเรียน เขียนโปรแกรม python (ภาคปฏิบัติ). สำนักพิมพ์คอร์ฟังก์ชั่น. กรุงเทพฯ
วรวุฒิ กังหัน และ อิศกฤตา โลหพรหม. 2561. การพัฒนาและทดลองคัดแยกเกรดแตงโมด้วยการประมวลภาพดิจิตอล. การประชุมวิชาการวิศวกรรมเกษตรแห่งประเทศไทยระดับชาติ ครั้งที่ 19 วันที่ 26-27 เมษายน 2561. (Available online at www.tsea.asia)
Arman A. A.M. Motlagh., and A. Khoshroo. 2011. Recognition of weed seed species by image processing. Journal of food, Agriculture& Environment Vol. 9: 379-383.
Chupawa P.and K.Kanjanawanishkul. 2014. Sweet Pepper Seed Inspection Using Image Processing Techniques. Advanced Materials Research. ISSN: 1662-8985, Vol. 931-932, pp. 1614-1618.
Granitto P. M., H. D. Navone, P. F. Verdes, and H. A. Ceccatto. 2002. Weed seeds identification by machine vision, Computers and Electronics in Agriculture. Vol. 33: 91-103.
Kuncan M., H.M. Ertunc. 2016. Olive separation machine based on image processing. MECHANIKA. Volume 22: 438-443.
Kurttulmus F., I. Alibas and I Kavdir. 2016. Classification of pepper seeds using machine vision based on neural network. Int J Agric& Biol Eng, Vol. 9 No. 1.
Lee H., T. Quoc Huy, E. Park, H.-Jin Bae, I. Baek, M. S. Kim, C. Mo and B.-Kwan Cho. 2017. Machine Vision Technique for Rapid Measurement of Soybean Seed Vigor. Journal of Biosystems Engineering. 42: 227-233.
Pandey P., S. Krishna and S. Sharma. 2013. Automatic Seed Classification by Shape and Color Features using Machine Vision Technology, International Journal of Computer Applications Technology and Research. 2: 208-213.
Somthawin Khunkhet and T. Remsungnen. 2018. Non-destructive Identification of Breeding Rice Seed by Using Image Processing and Fuzzy Logic. Journal of Scientific and Engineering Research. 5: 108-121.