Association of PIT1 MSTN and TGF-β3 genes on body weight breast circumference and breast width in Thai native chicken Chee KKU 12 and Pradu hang dam morkho 55

Main Article Content

Sajee Kunhareang
Thongsa Buasook
Monchai Duangjinda

Abstract

A study of genetic variation of PIT1, MSTN and TGF-β3 genes was performed by PCR-RFLP technique, following analysis of genetic association with body weight, breast circumference and breast width at 14 weeks of age. A total of 73 blood samples were collected from Thai native chicken Chee KKU 12 (Chee KKU 12) and 55 samples from Pradu hang dam morkho 55. The results of genetic variation showed three genotypes in PIT1 and TGF-β3 of both chicken breeds, whereas variation of MSTN revealed three genotypes in Chee KKU 12 and two genotypes in Pradu hang dam morkho 55. Association analysis in Chee KKU 12 showed that genotypes AA and AG of MSTN were significantly associated with increased body weight at 14 weeks (P<0.05) which was 1196.39±33.87 g and 1175.97±21.24 g compared with genotype GG was 1110.66±20.28 g. In addition, there was association between genotype AA of MSTN and increased breast circumference and breast width. Meanwhile, in Pradu hang dam morkho 55, there were association between genotypes CC and CT of PIT1 and body weight at 4 weeks which was 171.52±10.95 g and 162.72±6.80 g that these variants were higher than genotype TT (134.19±13.45 g). Further analysis of gene effects in all breeds also revealed association between variation of MSTN and body weight at 14 weeks. Genotype GA had highest body weight at 1241.67±23.77 g which was higher than genotype AA (1193.69±25.06 g) and genotype GG (1172.88±30.44 g). In addition, at 14 weeks the results showed that Pradu hang dam morkho 55 had a higher body weight than Chee KKU. 12 (P<0.05), which was 1253.90±28.56 g and 1151.60±20.12 g. These results indicated that genetic variation of PIT1 and MSTN may be involved in growth performance and body weight in chickens, but there was no association of TGF-β3 genes with any growth traits. The finding, therefore, suggests that variation of PIT1 and MSTN are compromising to use as genetic marker to improve growth performance and body weight in native chickens.

Article Details

How to Cite
Kunhareang, S. ., Buasook, T. ., & Duangjinda, M. . (2018). Association of PIT1 MSTN and TGF-β3 genes on body weight breast circumference and breast width in Thai native chicken Chee KKU 12 and Pradu hang dam morkho 55. Khon Kaen Agriculture Journal, 46(6), 1033–1044. retrieved from https://li01.tci-thaijo.org/index.php/agkasetkaj/article/view/250203
Section
บทความวิจัย (research article)

References

พิริยาภรณ์ สังคปรีชา, มนต์ชัย ดวงจินดา, บัญญัติ เหล่าไพบูลย์, และวุฒิไกร บุญคุ้ม. 2558. การประมาณค่าพารามิเตอร์ทางพันธุกรรมของสมรรถนะการเจริญเติบโตในไก่ดำสายพันธุ์ต่างๆ และลูกผสมไก่ดำ. แก่นเกษตร. 43: 309-318.
มนต์ชัย ดวงจินดา. 2544. การใช้โปรแกรม SAS เพื่อการวิเคราะห์ทางสัตว์. ภาควิชาสัตวศาสตร์ คณะเกษตรศาสตร์ มหาวิทยาลัยขอนแก่น, ขอนแก่น.
มนต์ชัย ดวงจินดา, บัญญัติ เหล่าไพบูลย์, เทวินทร์ วงษ์พระลับ, สจี กัณหาเรียง, วุฒิไกร บุญคุ้ม, ยุพิน ผาสุข และ พิชญ์รัตน์ แสนไชยสุริยา. 2556. รายงานวิจัยฉบับสมบูรณ์เสนอต่อสำนักประสานงานชุดโครงการ ศูนย์เครือข่ายวิจัยและพัฒนาด้านการปรับปรุงพันธุ์สัตว์ (ไก่พื้นเมือง) สำนักงานกองทุนสนับสนุนการวิจัย, กรุงเทพฯ.ศูนย์เครือข่ายวิจัยและพัฒนาด้านการปรับปรุงพันธุ์สัตว์ (ไก่พื้นเมือง). 2553. การวัดความกว้างอก รอบอก. แหล่งข้อมูล: https://goo.gl/cXszQ1 ค้นเมื่อ 10 สิงหาคม 2561.
สจี กัณหาเรียง. 2560. การประเมินความหลากหลายพันธุกรรมของลักษณะผลผลิตเนื้อ และคุณภาพเนื้อในไก่พื้นเมืองไทย. รายงานการวิจัยฉบับสมบูรณ์. สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) และ มหาวิทยาลัยขอนแก่น (Project Code : TRG5880022).
อภิชัย รัตนวราหะ. 2541. ไก่พื้นเมือง: สัตว์เศรษฐกิจระดับชาวบ้าน. พิมพ์ครั้งที่ 3. สำนักพิมพ์มติชน, กรุงเทพฯ.
Allais, S., H. Leve ́ziel and N. Payet-Duprat. 2010. The two mutations, Q204X and nt821 of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breeds. J. Anim. Sci. 88:446–54.
Amirinia, C., H. R. Seyedabadi, N. Amirmozafari, R. V. Torshizi, M. Chamani, A. J. Aliabad and M. A. Abbasi. 2011. Association of transforming growth factor-ß3 gene polymorphism with growth and body composition traits in Iranian commercial broiler lines. Afr. J. Biotechnol. 10:1784-1788.
Baron, E. E., A. .A. Wenceslau, L. E. Alvares, K. Nones, D. C. Ruy, G. S. Schmidt, E. L. Zanella, L. L. Coutinho and M. C. Ledur. 2002. High level of polymorphism in the myostatin chicken gene. Pp. 19-23 in Proc. 7th World Congr. Genet. Appl. Livest. Prod. Montpellier, France.
Bai, J.Y., Q. Zhang and X. P. Jia. 2006. Comparison of different foreground and background selection methods in marker-assisted introgression. Acta Genetica Sinica.33:1073-1080.
Buasook, T., M. Duangjinda, B. Laopaiboon and S. Kunhareang. 2015. Genetic Pattern of MSTN and TGF-β3 in Thai Native Chicken Crossbred. KHON KAEN AGR. J. 43:200-202.
Carrijo, S. M., M. M. De Alencar, F. L. B. Toral, and L. C. De Almedia Regitano. 2008. Association of Pit1 genotypes with growth traits in Canchim cattle. Sci. Agric.65:116-121.
Goodwin, W., A. Linacre, and S. Hadi. 2007. An Introduction to Forensic Genetics. John Wiley & Sons Ltd., Chicheste.
Gu, Z. L., D. H. Zhu, N. Li, H. Li, X. M. Deng, and C. X. Wu. 2003. Polymorphisms of myostatin gene and its relationship with the development of skeletal muscle and fat in chickens. Science in China Series C: Life Sciences. 33:273–80.
Gu Z., D. Zhu, N. Li, H. Li, X. Deng, and C. Wu. 2004. The single nucleotide polymorphisms of the chicken myostatin gene are associated with skeletal muscle and adipose growth. Sci. China Ser. C Life Sci. 47: 26-31.
Guillaume, F., S. Fritz, D. Boicharo, and T. Druet. 2008. Estimation by simulation of the efficiency of the French marker – assisted selection program in dairy cattle. Gnet. Sel. Evol. 40: 91-102.
Jaturasitha, S., T. Srikanchai, M. Kreuzer, and M. Wicke. 2008. Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (Black-boned and Thai native) and imported extensive breeds (Bresse and Rhode Island Red). Poult. Sci. 87:160–169.
Jiang, R., J. Li, L. Qu, H. Li, and N. Yang. 2004. A new single-nucleotide polymorphism in the chicken pituitary-specific transcription factor (POU1F1) gene associated with growth rate. Anim. Genet. 35:344–346.
Karim, L., W. Coppieters, L. Grobet, A. Valentini, and M. Georges. 2000. Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonu-cleotide ligation assay. Anim. Genet.31:396-399.
Le Bihan-Duval, E. M. Debut, C. M. Berri1, N. Sellier, V. Santé-Lhoutellier, Y. Jégo, and C. Beaumont. 2008. Chicken meat quality: genetic variability and relationship with growth and muscle characteristics. BMC Genetics. 9:53 doi:10.1186/1471-2156-9-53.
Li, H., N. Deeb, H. Zhou, A. D. Mitchell, C. M. Ashwell, and S. J. Lamont. 2003. Chicken quantitative trait loci for growth and body composition associated with transforming growth factor beta genes. Poult. Sci. 82:347–356.
Liu, L. X., T. F. Dou, Q. H. LI, H. Rong, H. Q. Tong, Z. Q. Xu, Y. Huang, D. H. Gu, X. B. Chen, C. R. Ge, and J. J. Jia. 2016. Myostatin mRNA expression and its association with body weight and carcass traits in Yunnan Wuding chicken. Genet. Mol. Res. 15: 1-12.
Lu, S. X. and C. X. Wu. 2002. Research and application of animal genetic marker-assisted selection. Yi Chuan.24: 359-362.
Lu, J., S. Hou, W. Huang, J. Yu, and W. Wang. 2011. Polymorphisms in the myostatin gene and their association with growth and carcass traits in duck. Afr. J. Biotech. 54: 11309-11312.
Nie, Q., B. Sun, D. Zhang, C. Luo, N. A. Ishag, M. Lei, G. Yang, and X. Zhan. 2005. High diversity of the chicken growth hormone gene and effects on growth and carcass traits. J. Hered. 96:698-703.
Nie, Q. H., M. X. Fang, L. Xie, M. Zhou, Z. M. Liang, Z. P. Luo, G. H. Wang, W. S. Bi, C. J. Liang, W. Zhang, and X. Q. Zhang. 2008. The PIT-1gene polymorphisms were associated with chicken growth traits. BMC Genet. 9:20-24.
Roberts, A. B., and M. B. Sporn. 2012. Transforming growth factorbeta: A large family of multifunctional regulatory proteins. J. Anim. Sci. 66:67–75.
Saadey, S. M., A. Galal, H.I. Zaky, and A. Zein ElDein. 2008. Diallel Crossing Analysis for Body Weight and Egg Production Traits of two native Egyptian and two Exotic Chicken Breeds. International Journal of poultry Science. 7: 64-71.
SAS Institude, Inc. 2015. SAS/STAT®14.1 User’s Guide. Cary, NC: SAS Institute Inc.Saxena, V. K., A. K. Sachdev, R. Gopal, and A. B. Pramod. 2009. Roles of important candidate genes on broiler meat quality. World’s Poult. Sci. J. 65:37–50.
Siwendu, N. A., D. Norris, J.W. Ngambi, H.A. Shinmelis, and Benyi, K. 2013. Heterosis and combining ability for body weight in diallele cross of three chicken genotypes. Trop. Anim. Helth. Prod. 45: 965-970.
Wang, J. Y. and G. H. Chen. 2004. Quantitative genetics and animal breeding. Nanjing.
Wiener, P., J. A. Woolliams, A. Frank-Lawale, M. Ryan, R. I. Richardson, G. R. Nute, J. D. Wood, D. Homer, and J. L. Williams. 2009. The effects of a mutation in the myostatin gene on meat and carcass quality. Meat Sci. 83:127–34.
Williams, S. M., S. E. Price, and P. B. Siegel. 2002. Heterosis of growth and reproductive traits in fowl. Poultry Science. 8: 1109-1112.
Xue, K., H. Chen, S. Wang, X. Cai, B. Liu, C. F. Zhang, C. Z. Lei, X. Z. Wang, Y. M. Wang , and H. Niu. 2006. Effect of genetic variations of the POU1F1 gene on growth traits of Nanyang cattle. Acta Genetica Sinica.33:901-907.
Ye, X., S. R. Brown, K. Nones, L. L. Coutinho, J. C. Dekkers, and S. J. Lamont. 2007. Associations of myostatin gene polymor-phisms with performance and mortality traits in broiler chickens. Genet. Sel. Evol.39:73-89.
Zhang, C., B. Liu, H. Chen, X. Lan, C. Lei, Z. Zhang, and R. Zhang. 2009. Associations of a HinfI PCR-RFLP of POU1F1 gene with growth traits in Qinchuan cattle. Anim. Biotechnol. 20:71-74. Zhang, G. X., X. H. Zhao, J. Y. Wang, F. X. Ding, and L. Zhang. 2011. Effect of an exon 1 mutation in the myostatin gene on the growth traits of the Bian chicken. Anim. Genet. 43:458–459.
Zhou, H., A. D. Mitchell, J. P. McMurtry, C. M. Ashwell, and S. J. Lamont. 2005. Insulin-like growth factor-I gene polymorphism associations with growth, body composition, skeleton integrity, and metabolic traits in chickens. Poult. Sci. 84:212-219.
Zintzaras, E. 2010. Impact of Hardy-Weinberg equilibrium deviation on allele-based risk effect of genetic association studies and meta-analysis. Eur. J. Epidemiol. 25: 553-560.