Effect of cassava starch waste and potassium on Khao Dowk Mali 105 rice
Main Article Content
Abstract
The experiment was conducted to investigate the effect of cassava starch waste (CSW) and potassium (K) on Jasmine rice CV. Khao Dawk Mali 105 (KDML 105) rice grown in Korat soil series was conducted in a farmer field in Ubon Ratchathani province. Experimental design was arranged in Factorial in RCBD. The first factor comprised the application of CSW at rates of 0, 0.5 and 1 t/rai. The second factor consisted of K fertilization at rates of 0, 0.25, 0.5, 0.75, 1 and 1.25 of the recommended rate basing on soil analytical data, which was 2.4 kg/rai of K2O. Result showed that CSW applied as soil amendment reduced soil acidity, increased organic matter and available K, especially when applied at the rate of 1 t/rai and, as a consequence, significantly resulted in the rice having plant height, number of panicle per hill and straw weight all greater than that of the control but unclear in the case of rice grain weight. The soil fertilized with K at the highest rate of 3.0 K2O/rai gave the greatest rice grain and straw weight (349 and 307 kg/rai, respectively), however; the differences were not clear when compared to other treatment using lower rates, but the amounts were significantly higher than those obtained from the control (278 and 209 kg/rai, respectively. The addition of K promoted better nutritional quality of KDML 105 rice grain, especially when applied solely at the rate of 2.4 kg K2O/rai, and together with CSW at the rate of 1 t/rai that significantly stimulated the highest iron concentration in rice grain of 13.1 mg/kg. Potassium had no impact on K uptake in plant tissues while the highest K uptake in rice straw was found in soil amended with CSW at the rate of 1 t/rai. Rice grain yield had a liner correlation with K concentration in grain (r=0.51**) more significantly than the other plant nutrients.
Article Details
References
มณีรัตน์ ม่วงศรี, จงรักษ์ จันทร์เจริญสุข และ เอ็จสโรบล. 2551. ผลการใส่ฟางข้าวและแกลบร่วมกับปุ๋ยไนโตรเจน ฟอสฟอรัส และโพแทสเซียมต่อผลผลิตข้าวที่ปลูกในชุดดินพิมาย. ภาควิชาปฐพีวิทยา คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.
สุกัญญา จัตตุพรพงษ์ และ วราพันธุ์ จินตณวิชญ์. 2552. การใช้ประโยชน์เศษเหลือจากมันสำปะหลัง. ศูนย์ค้นคว้าและพัฒนาวิชาการอาหารสัตว์ สถาบันสุวรรณวาจกกสิกิจฯ มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน, นครปฐม.
สำนักงานเศรษฐกิจการเกษตร. 2558. สถิติการเกษตรของประเทศไทยปี 2558. กระทรวงเกษตร และสหกรณ์, กรุงเทพฯ.
อำนาจ สุวรรณฤทธิ์, สมชาย กรีฑาภิรมย์, สุภาพ บูรณากาญจน์, พรรณพิมล สุริยะพรหมชัย, วารุณี วารัญญานนท์, พัชรี โสธนาสมบูรณ์, ทรงศักดิ์ รัฐปัตย์, ทรงชัย วัฒนพายัพกุล, กรรณิกา นาลาง, สว่าง โรจนกุศล และ พิทักษ์ พรอุไรสนิท. 2540. ผลของปุ๋ยโพแทสเซียมต่อคุณภาพเมล็ดข้าวหอมขาวดอกมะลิ 105. ว. เกษตรศาสตร์ (วิทย์.)31: 175-191.
Allen, V.B. and D.J. Pilbeam. 2015. Handbook of Plant Nutrition, 2nd ed. CRC Press.
Bhamdari, A.L., Amin, R., Yadav, C.R., Bhattarai, E.M., Das, S. and H.P. Aggarwal. 2003. How extensive are yield declines in long-term rice-wheat experiment in Asia. Field Crop Research. 81, 159-180.
Brady N.C. and R.R. Weil. 2008. The Nature and Properties of Soils. 14 ed. Pearson-Prentice Hall, Upper Saddle River, NJ.
Buakhao, B., S. Thanachit and S. Anusontpornperm. 2012. Comparative efficiency of acacia leaf (Acacia ampliceps Maslin.) and soil amendments on sodic soil reclamation for growing jasmine rice in northeast Thailand. Proceeding of 38thCongress on Science and Technology of Thailand, 17-19 October 2012, The Empress Convention Centre, Chiang Mai, Thailand.
Cha-um, S., K. Supaibulwattana and C. Kirdmanee. 2009. Comparative effects of salt stress and extreme pH stress combined on Glycinebetaine accumulate, photosysnthetic and growth characters of two rice genotypes. Rice Sci. 16: 274-182.
Cha-um, S. and C. Kirdmanee. 2011. Remediation of salt-affected soil by the addition of organic matter an investigation into improving glutinous rice productivity. Sci. Agric. (Piracicaba, Braz.) 68: 406-410.
Fageria, N. K., 2015.Potassium Requirements of Lowland Rice, Communications in Soil Science and Plant Analysis, 46:12, 1459-1472, DOI: 10.1080/00103624.2015.1043444
Jackson, M.L. 1965. Soil Chemical Analysis-Advanced Course. Department of Soils, University of Wisconsin, USA.
Jedrum, S., S. Thanachit, S. Anusontpornperm and W. Wiriyakitnateekul. 2014. Soil Amendments Effect on Yield and Quality of Jasmine Rice Grown on Typic Natraqualfs, Northeast Thailand. Inter. J. Soil Sci. 9: 37-54.
Johnson, C.M. and A. Ulrich. 1959. Analytical methods for use in plant analysis. Calif. Agri. Exp. Stat. Bull. 767: 25-78.
Murphy, J. and J.P. Riley. 1962. A modified single solution method for determination of phosphate in natural waters. Anal. Chim. Acta. 27: 31-36.
National Soil Survey Center. 1996. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, Version 3.0. Natural Conservation Service, USDA.
Seleque, M.A., M.K. Uddin, A.K.M. Ferdous, and M.H. Rashid. 2013. Potassium-constrained high yields in irrigated rice. J.Plant Nutri. 36: 1829-1840.
Westerman, R.L. 1990. Soil Testing and Plant Analysis. 3rd ed. Amer. Soil Sci. Soc. Amer., Madison, WI, USA.
Welch, R.M., and R.D. Graham. 2004. Breeding