Effect of Lactobacillus paracasei Inoculation at Different Level on Fermentation Quality and Chemical Composition of Ensiled Total Mixed Ration (eTMR)

Main Article Content

Natcha Ketpanich
Saowaluck Yammuen-art
Phongthorn Kongmun
Tossapol Moolmanee
K. Teepalak Rangubhet


The present research aimed to evaluate effect of Lactobacillus paracasei at different levels of inoculation on fermentation quality and chemical composition of the ensiled total mixed ration (eTMR). The treatments were divided into 6 groups: 1) fresh total mixed ration (fresh TMR), 2) TMR without inoculation (eTMR), 3) TMR with 104 CFU/g of TMR of L. paracasei (LP4), 4) TMR with 105 CFU/g of TMR of L. paracasei (LP5), 5) TMR with 106 CFU/g of TMR of L. paracasei (LP6) and 6) TMR with 107 CFU/g of TMR of L. paracasei (LP7). The statistic was fixed by effects of ensiling process, (Fresh TMR vs. eTMR) inoculation with L. paracasei or without (eTMR vs. LP4, LP5, LP6 and LP7). The samples were collected at 21 days of ensiling times for analysis of fermentation quality and chemical compositions. The result shows that L. paracasei inoculation significantly decreased pH values and ammonia nitrogen (NH3-N). Latic acid tended to be decreased by inoculation. High level of L. paracasei inoculation affected pH and NH3-N. Ensiling process decreased ether extract (EE) and hemicellulose. In addition,
L. paracasei
inoculation tended to prevent the loss of EE. Moreover, Acid detergent lignin (ADL) was reduced by
L. paracasei inoculation. L. paracasei inoculation reduced acid detergent fiber (ADF) content and decreased loss of hemicellulose from the ensiling process. Despite the fact that the ensiling process appears to lower eTMR pH values, the mean concentrations of NH3-N and lactic acid increased. Additionally, it reduces nutritive values of eTMR (EE, neutral detergent fiber (NDF) and hemicellulose) but increases ratio of nonstructural carbohydrate (NSC), ADF, and cellulose. L. paracasei inoculation can enhance fermentation quality by reducing pH values and NH3-N. It can prevent loss of EE from the ensiling process and reduce ADL content.


Download data is not yet available.

Article Details

บทความวิจัย (research article)


Abbasi, M., Y. Rouzbehan, J. Rezaei, and S. E. Jacobsen. 2018. The effect of lactic acid bacteria inoculation, molasses, or wilting on the fermentation quality and nutritive value of amaranth (Amaranthus hypochondriaus) silage. Journal of Animal Science. 96(9): 3983-3992.

AOAC. 2000. Official Methods of Analysis of AOAC. 17th Edition. Gaithersburg, MD, USA.

Argyri, A. A., G. Zoumpopoulou, K. A. G. Karatzas, E. Tsakalidou, G. J. E. Nychas, E. Z. Panagou, and C. C. Tassou. 2013. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiology. 33(2): 282-291.

Ávila, C. L. D. S., A. R. Valeriano, J. C. Pinto, H. C. P. Figueiredo, A. V. D. Rezende, and R. F. Schwan. 2010. Chemical and microbiological characteristics of sugar cane silages treated with microbial inoculants. Revista Brasileira de Zootecnia. 39(1): 25-32.

Ávila, C. L. S., and B. F. Carvalho. 2020. Silage fermentation—updates focusing on the performance of micro‐ organisms. Journal of Applied Microbiology. 128(4): 966-984.

Bal, M.A., J.G. Coors, and R.D. Shaver. 1997. Impact of the maturity of corn for use as silage in the diets of dairy cows on intake, digestion, and milk production. Journal of Dairy Science. 80: 2497-2503.

Blajman, J. E., R. B. Paez, C. G. Vinderola, M. S. Lingua, and Signorini, M. L. 2018. A meta‐analysis on the effectiveness of homofermentative and heterofermentative lactic acid bacteria for corn silage. Journal of Applied Microbiology. 125(6): 1655-1669.

Bueno, A.V.I., G. Lazzari, C. C. Jobim, and J. L. P. Daniel, 2020. Ensiling total mixed ration for ruminants: A review. Agronomy. 10(6): 879.

Chaney, A. L., and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clinical Chemistry. 8(2): 130-132.

De Man, J. C., D. Rogosa, and E. M. Sharpe. 1960. A medium for the cultivation of lactobacilli. J Journal of Applied Bacteriology. 23(1): 130-135.

Dewar, W.A., P. McDonald, and R. Whittenbury. 1963. The hydrolysis of grass hemicelluloses during ensilage. Journal of the Science of Food and Agriculture. 14(6): 411-417.

EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). 2011. Scientific Opinion on the safety and efficacy of Lactobacillus paracasei (DSM 16245) as a silage additive for all species. EFSA Journal. 9(9): 2363.

Ellis, J. L., I. K. Hindrichsen, G. Klop, R. D. Kinley, N. Milora, A. Bannink, and J. Dijkstra. 2016. Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle. Journal of Dairy Science. 99(9): 7159-7174.

Han, L., and H. Zhou. 2013. Effects of ensiling processes and antioxidants on fatty acid concentrations and compositions in corn silages. Journal of Animal Science and Biotechnology. 4(1): 1-7.

Heron, S. J., R. A. Edwards, and P. Phillips. 1989. Effect of pH on the activity of ryegrass Lolium multiflorum proteases. Journal of the Science of Food and Agriculture. 46(3): 267-277.

Holzapfel, W. H. 1992. Culture media for non-sporulating Gram-positive food spoilage bacteria. International Journal of Food Microbiology. 17(2): 113-133.

Houfani, A.A., N. Anders, A. C. Spiess, P. Baldrian, and S. Benallaoua. 2020. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars–a review. Biomass and Bioenergy. 134: 105481.

Hu, X., W. Hao, H. Wang, T. Ning, M. Zheng, and C. Xu. 2015. Fermentation characteristics and lactic acid bacteria succession of total mixed ration silages formulated with peach pomace. Asian-Australasian journal of Animal Sciences. 28(4): 502.

Huyen, N. T., I. Martinez, and W. Pellikaan. 2020. Using lactic acid bacteria as silage inoculants or direct-fed microbials to improve in vitro degradability and reduce methane emissions in dairy cows. Agronomy. 10(10): 1482.

Jiang, D., B. Li, M. Zheng, D. Niu, S. Zuo, and C. Xu. 2020. Effects of Pediococcus pentosaceus on fermentation, aerobic stability, and microbial communities during ensiling and aerobic spoilage of total mixed ration silage containing alfalfa (Medicago sativa L.). Grassland Science. 66(4): 215-224.

Kachouri, F., K. Setti, H. Ksontini, M. Mechmeche, and M. Hamdi. 2016. Improvement of antioxidant activity of olive mill wastewater phenolic compounds by Lactobacillus plantarum fermentation. Desalination and Water Treatment. 57(56): 27125-27137.

Kietkwanboot, A. 2013. Decolorization and Biodegradation of Phenolics in Palm Oil Mill Effluent by White Rot Fungi Immobilized on Oil Palm Residues. M.Sc. Thesis in Environmental Management. Prince of Songkla University, Songkla.

Kim, D. H., K. D. Lee, and K. C. Choi, 2021. Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production—An overview. AIMS Agriculture and Food. 6(1): 216-234.

Kondo, M., K. Shimizu, A. Jayanegara, T. Mishima, H. Matsui, S. Karita, M. Goto, and T. Fujihara. 2016. Changes in nutrient composition and in vitro ruminal fermentation of total mixed ration silage stored at different temperatures and periods. Journal of the Science of Food and Agriculture. 96(4): 1175-1180.

Kung Jr, L., and N.K. Ranjit. 2001. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. Journal of Dairy Science. 84(5): 1149-1155.

Lee, K., T. D. Marbun, S. Kim, J. Song, C. H. Kwon, D. Yoon, J. Kang, C. Lee, S. Cho, and E. J. Kim, 2020. Effect of lactic acid bacteria treatment on nutritive value and in vitro ruminal fermentation of Italian ryegrass (Lolium multiflorum L.) silage. Journal of The Korean Society of Grassland and Forage Science. 40(3): 182-189.

Lei, C. H. E. N., X. J. Yuan, J. F. LI, S. R. Wang, Z. H. Dong, and S. H. A. O. Tao. 2017. Effect of lactic acid bacteria and propionic acid on conservation characteristics, aerobic stability and in vitro gas production kinetics and digestibility of whole-crop corn based total mixed ration silage. Journal of Integrative Agriculture. 16(7): 1592-1600.

Li, R., D. Jiang, M. Zheng, P. Tian, M. Zheng, and C. Xu. 2020. Microbial community dynamics during alfalfa silage with or without clostridial fermentation. Scientific Reports. 10(1): 1-14.

Madrid, J., A. Martínez‐Teruel, F. Hernández, and M. D. Megías. 1999. A comparative study on the determination of lactic acid in silage juice by colorimetric, high‐performance liquid chromatography and enzymatic methods. Journal of the Science of Food and Agriculture. 79(12): 1722-1726.

Muck, R. E., E. M. G. Nadeau, T. A. Mcallister, F. E. Contreras-Govea, M. C. Santos, and L. Kung Jr. 2018. Silage review: recent advances and future uses of silage additives. Journal of Dairy Science. 101: 3980–4000.

National Research Council. 1992. Applications of Biotechnology in Traditional Fermented Foods. National Academies Press, Washington, D.C.

Oliveira, A.S., Z. G Weinberg, I. M. Ogunade, A. A. Cervantes, K. G. Arriola, Y. Jiang, D. Kim, X. Li, M. C. Gonçalves, D. Vyas, and A. T. Adesogan. 2017. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. Journal of Dairy Science. 100(6): 4587-4603.

Ortigosa, M., C. Arizcun, A. Irigoyen, M. Oneca, and P. Torre. 2006. Effect of lactobacillus adjunct cultures on the microbiological and physicochemical characteristics of Roncal-type ewes’-milk cheese. Food Microbiology. 23(6): 591-598.

Patel, J.P., and P.H. Parsania. 2018. Characterization, testing, and reinforcing materials of biodegradable composites. Biodegradable and Biocompatible Polymer Composites. 55-79.

Pitt, R.E. 1990. Silage and Hay Preservation (NRAES 5).

Ramos, J.P.F., E. M. Santos, A. P. M. Santos, W. H. Souza, J. S. Oliveira, and T. C. Silva. 2016. Ensiling of forage crops in semiarid regions. Advances in Silage Production and Utilization, Cap. 4: 65-84.

Rossi, F., V. Gatto, G. Sabattini, and S. Torriani. 2012. An assessment of factors characterising the microbiology of Grana Trentino cheese, a Grana‐type cheese. International Journal of Dairy Technology. 65(3): 401-409.

Scherer, R., A. C. P. Rybka, C. A. Ballus, A. D. Meinhart, J. F. Teixeira, and H. T. Godoy. 2012. Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chemistry. 135(1): 150-154.

Schmidt, P., L. G. Nussio, O. C. M. Queiroz, M. C. Santos, M. Zopollatto, S. G. D. Toledo Filho, and J. L. P. Daniel. 2014. Effects of Lactobacillus buchneri on the nutritive value of sugarcane silage for finishing beef bulls. Revista Brasileira de Zootecnia. 43: 8-13.

Sofyan, A., A.N. Aswari, T. Purwoko, and E. Damayanti. 2013. Screening of lactic acid bacteria from rumen liquor and king grass silage as well as their antibacterial activities. Media Peternakan. 36(3): 216-216.

Steel, R. G. D., and J. H. Torrie. 1980. Principles and Procedures of Statistics: A Biometrical Approach. 2nd edition. McGraw-Hill, NY.

Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarchpolysaccharides in relation to animal nutrition. Journal of Dairy Science. 74: 3583-3597.

Weinberg, Z.G., G. Ashbell, Y. Hen, and A. Azrieli. 1993. The effect of applying lactic acid bacteria at ensiling on the aerobic stability of silages. Journal of Applied Bacteriology. 75(6): 512-518.

Wongnen, C., C. Wachirapakorn, C. Patipan, D. Panpong, K. Kongweha, N. Namsaen, P. Gunun, and C. Yuangklang. 2009. Effects of fermented total mixed ration and cracked cottonseed on milk yield and milk composition in dairy cows. Asian-Australasian Journal of Animal Sciences. 22(12): 1625-1632.

Zhao, S., F. Yang, Y. Wang, X. Fan, C. Feng, and Y. Wang. 2021. Dynamics of Fermentation Parameters and Bacterial Community in High-Moisture Alfalfa Silage with or without Lactic Acid Bacteria. Microorganisms. 9(6): 1225.